Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874594

RESUMO

Muscle synergies are defined as coordinated recruitment of groups of muscles with specific activation balances and time profiles aimed at generating task-specific motor commands. While muscle synergies in postural control have been investigated primarily in reactive balance conditions, the neuromechanical contribution of muscle synergies during voluntary control of upright standing is still unclear. In this study, muscle synergies were investigated during the generation of isometric force at the trunk during the maintenance of standing posture. Participants were asked to maintain the steady-state upright standing posture while pulling forces of different magnitudes were applied at the level at the waist in eight horizontal directions. Muscle synergies were extracted by nonnegative matrix factorization from sixteen lower limb and trunk muscles. An average of 5-6 muscle synergies were sufficient to account for a wide variety of EMG waveforms associated with changes in the magnitude and direction of pulling forces. A cluster analysis partitioned the muscle synergies of the participants into a large group of clusters according to their similarity, indicating the use of a subjective combination of muscles to generate a multidirectional force vector in standing. Furthermore, we found a participant-specific distribution in the values of cosine directional tuning parameters of synergy amplitude coefficients, suggesting the existence of individual neuromechanical strategies to stabilize the whole-body posture. Our findings provide a starting point for the development of novel diagnostic tools to assess muscle coordination in postural control and lay the foundation for potential applications of muscle synergies in rehabilitation.

2.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931719

RESUMO

Sensor-based assessments in medical practice and rehabilitation include the measurement of physiological signals such as EEG, EMG, ECG, heart rate, and NIRS, and the recording of movement kinematics and interaction forces. Such measurements are commonly employed in clinics with the aim of assessing patients' pathologies, but so far some of them have found full exploitation mainly for research purposes. In fact, even though the data they allow to gather may shed light on physiopathology and mechanisms underlying motor recovery in rehabilitation, their practical use in the clinical environment is mainly devoted to research studies, with a very reduced impact on clinical practice. This is especially the case for muscle synergies, a well-known method for the evaluation of motor control in neuroscience based on multichannel EMG recordings. In this paper, considering neuromotor rehabilitation as one of the most important scenarios for exploiting novel methods to assess motor control, the main challenges and future perspectives for the standard clinical adoption of muscle synergy analysis are reported and critically discussed.


Assuntos
Eletromiografia , Músculo Esquelético , Humanos , Fenômenos Biomecânicos/fisiologia , Eletromiografia/métodos , Movimento/fisiologia , Músculo Esquelético/fisiologia
3.
Comput Methods Programs Biomed ; 251: 108217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744059

RESUMO

BACKGROUND AND OBJECTIVE: A new direction in the study of motor control was opened about two decades ago with the introduction of a model for the generation of motor commands as combination of muscle synergies. Muscle synergies provide a simple yet quantitative framework for analyzing the hierarchical and modular architecture of the human motor system. However, to gain insights on the functional role of muscle synergies, they should be related to the task space. The recently introduced mixed-matrix factorization (MMF) algorithm extends the standard approach for synergy extraction based on non-negative matrix factorization (NMF) allowing to factorize data constituted by a mixture of non-negative variables (e.g. EMGs) and unconstrained variables (e.g. kinematics, naturally including both positive and negative values). The kinematic-muscular synergies identified by MMF provide a direct link between muscle synergies and the task space. In this contribution, we support the adoption of MMF through a Matlab toolbox for the extraction of kinematic-muscular synergies and a set of practical guidelines to allow biomedical researchers and clinicians to exploit the potential of this novel approach. METHODS: MMF is implemented in the SynergyAnalyzer toolbox using an object-oriented approach. In addition to the MMF algorithm, the toolbox includes standard methods for synergy extraction (NMF and PCA), as well as methods for pre-processing EMG and kinematic data, and for plotting data and synergies. RESULTS: As an example of MMF application, kinematic-muscular synergies were extracted from EMG and kinematic data collected during reaching movements towards 8 targets on the sagittal plane. Instructions and command lines to achieve such results are illustrated in detail. The toolbox has been released as an open-source software on GitHub under the GNU General Public License. CONCLUSIONS: Thanks to its ease of use and adaptability to a variety of datasets, SynergyAnalyzer will facilitate the adoption of MMF to extract kinematic-muscular synergies from mixed EMG and kinematic data, a useful approach in biomedical research to better understand and characterize the functional role of muscle synergies.


Assuntos
Algoritmos , Eletromiografia , Músculo Esquelético , Humanos , Fenômenos Biomecânicos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Software
4.
Front Bioeng Biotechnol ; 12: 1376000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665814

RESUMO

Effective upper-limb rehabilitation for severely impaired stroke survivors is still missing. Recent studies endorse novel motor rehabilitation approaches such as robotic exoskeletons and virtual reality systems to restore the function of the paretic limb of stroke survivors. However, the optimal way to promote the functional reorganization of the central nervous system after a stroke has yet to be uncovered. Electromyographic (EMG) signals have been employed for prosthetic control, but their application to rehabilitation has been limited. Here we propose a novel approach to promote the reorganization of pathological muscle activation patterns and enhance upper-limb motor recovery in stroke survivors by using an EMG-controlled interface to provide personalized assistance while performing movements in virtual reality (VR). We suggest that altering the visual feedback to improve motor performance in VR, thereby reducing the effect of deviations of the actual, dysfunctional muscle patterns from the functional ones, will actively engage patients in motor learning and facilitate the restoration of functional muscle patterns. An EMG-controlled VR interface may facilitate effective rehabilitation by targeting specific changes in the structure of muscle synergies and in their activations that emerged after a stroke-offering the possibility to provide rehabilitation therapies addressing specific individual impairments.

5.
J Neurophysiol ; 131(6): 1126-1142, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629162

RESUMO

The central nervous system (CNS) may produce the same endpoint trajectory or torque profile with different muscle activation patterns. What differentiates these patterns is the presence of cocontraction, which does not contribute to effective torque generation but allows to modulate joints' mechanical stiffness. Although it has been suggested that the generation of force and the modulation of stiffness rely on separate pathways, a characterization of the differences between the synaptic inputs to motor neurons (MNs) underlying these tasks is still missing. In this study, participants coactivated the same pair of upper-limb muscles, i.e., the biceps brachii and the triceps brachii, to perform two functionally different tasks: limb stiffness modulation or endpoint force generation. Spike trains of MNs were identified through decomposition of high-density electromyograms (EMGs) collected from the two muscles. Cross-correlogram showed a higher synchronization between MNs recruited to modulate stiffness, whereas cross-muscle coherence analysis revealed peaks in the ß-band, which is commonly ascribed to a cortical origin. These peaks did not appear during the coactivation for force generation, thus suggesting separate cortical inputs for stiffness modulation. Moreover, a within-muscle coherence analysis identified two subsets of MNs that were selectively recruited to generate force or regulate stiffness. This study is the first to highlight different characteristics, and probable different neural origins, of the synaptic inputs driving a pair of muscles under different functional conditions. We suggest that stiffness modulation is driven by cortical inputs that project to a separate set of MNs, supporting the existence of a separate pathway underlying the control of stiffness.NEW & NOTEWORTHY The characterization of the pathways underlying force generation or stiffness modulation are still unknown. In this study, we demonstrated that the common input to motor neurons of antagonist muscles shows a high-frequency component when muscles are coactivated to modulate stiffness but not to generate force. Our results provide novel insights on the neural strategies for the recruitment of multiple muscles by identifying specific spectral characteristics of the synaptic inputs underlying functionally different tasks.


Assuntos
Neurônios Motores , Músculo Esquelético , Músculo Esquelético/fisiologia , Neurônios Motores/fisiologia , Humanos , Masculino , Adulto , Feminino , Eletromiografia , Contração Muscular/fisiologia , Adulto Jovem , Sinapses/fisiologia
6.
Eur J Phys Rehabil Med ; 60(1): 37-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37971719

RESUMO

INTRODUCTION: Virtual reality (VR) is an advanced technology that creates simulated environments and conditions. By offering the possibility of combining motor, cognitive, and well-being in conjunction with the potential to manipulate multi-sensorial features in a safe environment, VR has emerged as a promising powerful rehabilitation tool. Among advanced VR systems, various authors have highlighted promising effects in the rehabilitation of the computer-assisted rehabilitation environment (CAREN - Motekforce Link; Amsterdam, The Netherlands). In our scoping review, we aimed to map the existing evidence on the use of CAREN in the rehabilitation of neurological patients. EVIDENCE ACQUISITION: This scoping review was conducted following the PRISMA guidelines. A search was carried out for all peer-reviewed articles published until June 30, 2023, using the following databases: PubMed, Embase, Cochrane Database, PeDro and Web of Science. The following terms have been used: ("Cognitive Rehabilitation" OR "Motor Rehabilitation" OR "CAREN" or "Computer-Assisted Rehabilitation Environment") AND ("Virtual Reality" OR "Rehab"). EVIDENCE SYNTHESIS: From the assessed studies, only seven met the inclusion criteria: 1) one study concerned cognitive rehabilitation in patients suffering from Parkinson's Disease (PD); 2) one was on the usability of CAREN in PD patients; 3) two studies related to the influence of emotional components to CAREN rehabilitation; 4) three studies were related to motor rehabilitation using CAREN, and involved individuals with PD, Multiple Sclerosis, TBI, respectively. Generally, the few assessed studies demonstrate that CAREN is a safe and potentially effective tool to treat different symptoms (including gait and vestibular disturbances, executive function, depressive mood, and anxiety) in patients with different neurological disorders. CONCLUSIONS: The reviewed literature indicated the potential use of CAREN in improving motor and cognitive skills with conflicting results on emotional aspects. However, since the data comes from few and small sample size studies, further research is needed to confirm the effectiveness of the tool in neurorehabilitation.


Assuntos
Esclerose Múltipla , Doenças do Sistema Nervoso , Doença de Parkinson , Realidade Virtual , Humanos , Doença de Parkinson/reabilitação , Esclerose Múltipla/reabilitação , Computadores
7.
Phys Med Biol ; 69(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38100845

RESUMO

Objective.Magnetic resonance imaging-guided focused ultrasound surgery (MRgFUS) is a non-invasive thermal ablation method that involves high-intensity focused ultrasound surgery (FUS) and Magnetic Resonance Imaging for anatomical imaging and real-time thermal mapping. This technique is widely employed for the treatment of patients affected by essential tremor (ET) and Parkinson's disease (PD). In the current study, functional near-infrared spectroscopy (fNIRS) was used to highlight hemodynamics changes in cerebral cortex activity, during a simple hand motor task, i.e. unimanual left and right finger-tapping, in ET and PD patients.Approach.All patients were evaluated before, one week and one month after MRgFUS treatment.Main results.fNIRS revealed cerebral hemodynamic changes one week and one month after MRgFUS treatment, especially in the ET group, that showed a significant clinical improvement in tremor clinical scores.Significance.To our knowledge, our study is the first that showed the use of fNIRS system to measure the cortical activity changes following unilateral ventral intermediate nucleus thalamotomy after MRgFUS treatment. Our findings showed that therapeutic MRgFUS promoted the remodeling of neuronal networks and changes in cortical activity in association with symptomatic improvements.


Assuntos
Tremor Essencial , Doença de Parkinson , Humanos , Projetos Piloto , Tremor Essencial/terapia , Tremor Essencial/cirurgia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Imageamento por Ressonância Magnética/métodos , Tálamo/cirurgia , Resultado do Tratamento
8.
Artigo em Inglês | MEDLINE | ID: mdl-38082698

RESUMO

Under the synergy hypothesis, novel muscle synergies may be required for motor skill learning. We have developed a "virtual surgery" experimental paradigm that alters the mapping of muscle activations onto virtual cursor motion during an isometric reaching task using myoelectric control. By creating virtual surgeries that are "incompatible" with the original synergies, we can investigate learning new muscle synergies in controlled experimental conditions. We have previously shown that participants are able to improve their task performance after an incompatible virtual surgery, using novel muscle patterns to overcome the perturbation. In this work, we investigated whether the activation of novel muscle patterns, that are required after an incompatible virtual surgery, affects task performance or the muscle patterns after re-adaptation to the unperturbed baseline mapping. We found that experiencing an incompatible virtual surgery did not affect the task performance during the baseline mapping. However, the adaptation to the incompatible virtual surgery resulted in changes in the null space components of the muscle patterns used in the unperturbed task.


Assuntos
Músculo Esquelético , Análise e Desempenho de Tarefas , Humanos , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Destreza Motora/fisiologia , Aprendizagem/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-38083077

RESUMO

According to the synergy hypothesis, the motor system recruits a small number of synergies in a task-dependent manner. Existing synergy extraction algorithms typically only consider the muscle pattern and it remains unclear to which extent muscle synergies encode task-relevant variations of muscle activity. We propose a novel force-constrained non-negative matrix algorithm (FCNMF) based on a gradient descent update rule that considers also the task space by adding a term penalizing force reconstruction error in the cost function. We validated the FCNMF algorithm using simulated muscle data and corrupted them by noise. We compared task performances with reconstructed trajectories using synergies (RS) extracted from the FCNMF algorithm and from the standard multiplicative non-negative matrix factorization NMF algorithm. We found that FCNMF outperforms NMF for different types of noise. Finally, we demonstrated the effectiveness of FCNMF on EMG data collected during an isometric reaching task. The new algorithm accurately reconstructs the trajectories in all participants, even in those for which the NMF algorithm fails. These findings show the effectiveness of muscle synergies extracted considering the task space, possibly thanks to the robustness of FCNMF against non-isotropic noise present in muscle data, suggesting that they provide an effective strategy for motor coordination.


Assuntos
Movimento , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Movimento/fisiologia , Algoritmos
10.
J Neurophysiol ; 130(5): 1194-1199, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791384

RESUMO

Motor skill learning requires the acquisition of novel muscle patterns and a new control policy-a process that requires time. In contrast, motor adaptation often requires only the adjustment of existing muscle patterns-a fast process. By altering the mapping of muscle activations onto cursor movements in a myoelectrically controlled virtual environment, we are able to create perturbations that require either the recombination of existing muscle synergies (compatible virtual surgery) or the learning of novel muscle patterns (incompatible virtual surgery). We investigated whether adaptation to a compatible surgery is affected by prior exposure to an incompatible surgery, i.e., a motor skill learning task. We found that adaptation to a compatible surgery was characterized by a decrease in the quality of muscle pattern reconstructions using the original synergies and an increase in reaction times only after exposure to an incompatible surgery. In contrast, prior exposure to a compatible surgery did not affect the learning process required to overcome an incompatible surgery. The fact that exposure to an incompatible surgery had a profound effect on the muscle patterns during the adaptation to a subsequent compatible surgery and not vice versa suggests that null space exploration, possibly combined with an explicit exploration strategy, is engaged during exposure to an incompatible surgery and remains enhanced during a new adaptation episode. We conclude that motor skill learning, requiring novel muscle activation patterns, leads to changes in the exploration strategy employed during a subsequent perturbation.NEW & NOTEWORTHY Motor skill learning requires the acquisition of novel muscle patterns, whereas motor adaptation requires adjusting existing ones. We wondered whether training a new motor skill affects motor adaptation strategies. We show that learning an incompatible perturbation, a complex skill requiring new muscle synergies, affects the muscle patterns observed during adaption to a compatible perturbation, which requires adjusting the existing synergies. Our results suggest that motor skill learning results in persistent changes in the exploration strategy.


Assuntos
Destreza Motora , Músculo Esquelético , Músculo Esquelético/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Aprendizagem/fisiologia , Tempo de Reação , Adaptação Fisiológica/fisiologia , Desempenho Psicomotor/fisiologia
11.
Sci Rep ; 13(1): 16901, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803010

RESUMO

The transitions between sitting and standing have a high physical and coordination demand, frequently causing falls in older individuals. Rollators, or four-wheeled walkers, are often prescribed to reduce lower-limb load and to improve balance but have been found a fall risk. This study investigated how rollator support affects sit-to-stand and stand-to-sit movements. Twenty young participants stood up and sat down under three handle support conditions (unassisted, light touch, and full support). As increasing task demands may affect coordination, a challenging floor condition (balance pads) was included. Full-body kinematics and ground reaction forces were recorded, reduced in dimensionality by principal component analyses, and clustered by k-means into movement strategies. Rollator support caused the participants to switch strategies, especially when their balance was challenged, but did not lead to support-specific strategies, i.e., clusters that only comprise light touch or full support trials. Three strategies for sit-to-stand were found: forward leaning, hybrid, and vertical rise; two in the challenging condition (exaggerated forward and forward leaning). For stand-to-sit, three strategies were found: backward lowering, hybrid, and vertical lowering; two in the challenging condition (exaggerated forward and forward leaning). Hence, young individuals adjust their strategy selection to different conditions. Future studies may apply this methodology to older individuals to recommend safe strategies and ultimately reduce falls.


Assuntos
Postura , Postura Sentada , Humanos , Idoso , Movimento , Extremidade Inferior , Posição Ortostática , Fenômenos Biomecânicos
12.
Hum Mov Sci ; 92: 103148, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37708594

RESUMO

In the last two decades, muscle synergies analysis has been commonly used to assess the neurophysiological mechanisms underlying human motor control. Several synergy models and algorithms have been employed for processing the electromyographic (EMG) signal, and it has been shown that the coordination of motor control is characterized by the presence of phasic (movement-related) and tonic (anti-gravity and related to co-contraction) EMG components. Neural substrates indicate that phasic and tonic components have non-homogeneous origin; however, it is still unclear if these components are generated by the same set of synergies or by distinct synergies. This study aims at testing whether phasic and tonic components are generated by distinct phasic and tonic synergies or by the same set of synergies with phasic and tonic activation coefficients. The study also aims at characterizing the differences between the phasic and the tonic synergies. Using a comprehensive mapping of upper-limb point-to-point movements, synergies were extracted from phasic and tonic EMG signal separately, estimating the tonic components with a linear ramp model. The goodness of reconstruction (R2) as a function of the number of synergies was compared, and sets of synergies extracted from each dataset at three R2 threshold levels (0.80, 0.85, 0.90) were retained for further analysis. Then, shared, phasic-specific, and tonic-specific synergies were extracted from the two datasets concatenated. The dimensionality of the synergies shared between the phasic and the tonic datasets was estimated with a bootstrap procedure based on the evaluation of the distribution of principal angles between the subspaces spanned by phasic and tonic synergies due to noise. We found only few shared synergies, indicating that phasic and tonic synergies have in general different structures. To compare consistent differences in synergy composition, shared, phasic-specific, and tonic-specific synergies were clustered separately. Phasic-specific clusters were more numerous than tonic-specific ones, suggesting that they were more differentiated among subjects. The structure of phasic clusters and the higher sparseness indicated that phasic synergies capture specific muscle activation patterns related to the movement while tonic synergies show co-contraction of multiple muscles for joint stabilization and holding postures. These results suggest that in many scenarios phasic and tonic synergies should be extracted separately, especially when performing muscle synergy analysis in patients with abnormal tonic activity and for tuning devices with gravity support.


Assuntos
Movimento , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Movimento/fisiologia , Postura/fisiologia , Extremidade Superior
14.
Bioengineering (Basel) ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36829728

RESUMO

Estimation of the force exerted by muscles from their electromyographic (EMG) activity may be useful to control robotic devices. Approximating end-point forces as a linear combination of the activities of multiple muscles acting on a limb may lead to an inaccurate estimation because of the dependency between the EMG signals, i.e., multi-collinearity. This study compared the EMG-to-force mapping estimation performed with standard multiple linear regression and with three other algorithms designed to reduce different sources of the detrimental effects of multi-collinearity: Ridge Regression, which performs an L2 regularization through a penalty term; linear regression with constraints from foreknown anatomical boundaries, derived from a musculoskeletal model; linear regression of a reduced number of muscular degrees of freedom through the identification of muscle synergies. Two datasets, both collected during the exertion of submaximal isometric forces along multiple directions with the upper limb, were exploited. One included data collected across five sessions and the other during the simultaneous exertion of force and generation of different levels of co-contraction. The accuracy and consistency of the EMG-to-force mappings were assessed to determine the strengths and drawbacks of each algorithm. When applied to multiple sessions, Ridge Regression achieved higher accuracy (R2 = 0.70) but estimations based on muscle synergies were more consistent (differences between the pulling vectors of mappings extracted from different sessions: 67%). In contrast, the implementation of anatomical constraints was the best solution, both in terms of consistency (R2 = 0.64) and accuracy (74%), in the case of different co-contraction conditions. These results may be used for the selection of the mapping between EMG and force to be implemented in myoelectrically controlled robotic devices.

15.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679467

RESUMO

In recent years, different groups have developed algorithms to control the stiffness of a robotic device through the electromyographic activity collected from a human operator. However, the approaches proposed so far require an initial calibration, have a complex subject-specific muscle model, or consider the activity of only a few pairs of antagonist muscles. This study described and tested an approach based on a biomechanical model to estimate the limb stiffness of a multi-joint, multi-muscle system from muscle activations. The "virtual stiffness" method approximates the generated stiffness as the stiffness due to the component of the muscle-activation vector that does not generate any endpoint force. Such a component is calculated by projecting the vector of muscle activations, estimated from the electromyographic signals, onto the null space of the linear mapping of muscle activations onto the endpoint force. The proposed method was tested by using an upper-limb model made of two joints and six Hill-type muscles and data collected during an isometric force-generation task performed with the upper limb. The null-space projection of the muscle-activation vector approximated the major axis of the stiffness ellipse or ellipsoid. The model provides a good approximation of the voluntary stiffening performed by participants that could be directly implemented in wearable myoelectric controlled devices that estimate, in real-time, the endpoint forces, or endpoint movement, from the mapping between muscle activation and force, without any additional calibrations.


Assuntos
Músculo Esquelético , Extremidade Superior , Humanos , Músculo Esquelético/fisiologia , Extremidade Superior/fisiologia , Movimento/fisiologia , Algoritmos , Fenômenos Biomecânicos , Eletromiografia
16.
Neuroscience ; 514: 100-122, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708799

RESUMO

Muscle synergy analysis investigates the neurophysiological mechanisms that the central nervous system employs to coordinate muscles. Several models have been developed to decompose electromyographic (EMG) signals into spatial and temporal synergies. However, using multiple approaches can complicate the interpretation of results. Spatial synergies represent invariant muscle weights modulated with variant temporal coefficients; temporal synergies are invariant temporal profiles that coordinate variant muscle weights. While non-negative matrix factorization allows to extract both spatial and temporal synergies, the comparison between the two approaches was rarely investigated targeting a large set of multi-joint upper-limb movements. Spatial and temporal synergies were extracted from two datasets with proximal (16 subjects, 10M, 6F) and distal upper-limb movements (30 subjects, 21M, 9F), focusing on their differences in reconstruction accuracy and inter-individual variability. We showed the existence of both spatial and temporal structure in the EMG data, comparing synergies with those from a surrogate dataset in which the phases were shuffled preserving the frequency content of the original data. The two models provide a compact characterization of motor coordination at the spatial or temporal level, respectively. However, a lower number of temporal synergies are needed to achieve the same reconstruction R2: spatial and temporal synergies may capture different hierarchical levels of motor control and are dual approaches to the characterization of low-dimensional coordination of the upper-limb. Last, a detailed characterization of the structure of the temporal synergies suggested that they can be related to intermittent control of the movement, allowing high flexibility and dexterity. These results improve neurophysiology understanding in several fields such as motor control, rehabilitation, and prosthetics.


Assuntos
Músculo Esquelético , Músculo Temporal , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Movimento/fisiologia , Extremidade Superior/fisiologia
17.
iScience ; 25(10): 105212, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36262312

RESUMO

Predicting the outcome of observed actions is fundamental for efficient interpersonal interactions. This is evident in interceptive sports, where predicting the future ball trajectory could make apart success and fail. We quantitatively assessed the predictive abilities of non-trained adults intercepting thrown balls in immersive virtual reality. Participants performed better when they could see the complete throwing action in addition to the ball flight, and they were able to move toward the correct direction when the ball flight was occluded. In both cases, performance varies with the individual motor style of the thrower. These results prove that humans can effectively predict the unfolding of complex full-body actions, with no need to extensively practice them, and that such predictions are exploited online to optimize interactive motor performance. This suggests that humans hold a functional knowledge of how actions recurrent in the human motor repertoire map into the changes brought to the environment.

18.
Front Comput Neurosci ; 16: 926345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172054

RESUMO

A large body of evidence suggests that human and animal movements, despite their apparent complexity and flexibility, are remarkably structured. Quantitative analyses of various classes of motor behaviors consistently identify spatial and temporal features that are invariant across movements. Such invariant features have been observed at different levels of organization in the motor system, including the electromyographic, kinematic, and kinetic levels, and are thought to reflect fixed modules-named motor primitives-that the brain uses to simplify the construction of movement. However, motor primitives across space, time, and organization levels are often described with ad-hoc mathematical models that tend to be domain-specific. This, in turn, generates the need to use model-specific algorithms for the identification of both the motor primitives and additional model parameters. The lack of a comprehensive framework complicates the comparison and interpretation of the results obtained across different domains and studies. In this work, we take the first steps toward addressing these issues, by introducing a unifying framework for the modeling and identification of qualitatively different classes of motor primitives. Specifically, we show that a single model, the anechoic mixture model, subsumes many popular classes of motor primitive models. Moreover, we exploit the flexibility of the anechoic mixture model to develop a new class of identification algorithms based on the Fourier-based Anechoic Demixing Algorithm (FADA). We validate our framework by identifying eight qualitatively different classes of motor primitives from both simulated and experimental data. We show that, compared to established model-specific algorithms for the identification of motor primitives, our flexible framework reaches overall comparable and sometimes superior reconstruction performance. The identification framework is publicly released as a MATLAB toolbox (FADA-T, https://tinyurl.com/compsens) to facilitate the identification and comparison of different motor primitive models.

19.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35957264

RESUMO

Recent advances in the performance and evaluation of walking in exoskeletons use various assessments based on kinematic/kinetic measurements. While such variables provide general characteristics of gait performance, only limited conclusions can be made about the neural control strategies. Moreover, some kinematic or kinetic parameters are a consequence of the control implemented on the exoskeleton. Therefore, standard indicators based on kinematic variables have limitations and need to be complemented by performance measures of muscle coordination and control strategy. Knowledge about what happens at the spinal cord output level might also be critical for rehabilitation since an abnormal spatiotemporal integration of activity in specific spinal segments may result in a risk for abnormalities in gait recovery. Here we present the PEPATO software, which is a benchmarking solution to assess changes in the spinal locomotor output during walking in the exoskeleton with respect to reference data on normal walking. In particular, functional and structural changes at the spinal cord level can be mapped into muscle synergies and spinal maps of motoneuron activity. A user-friendly software interface guides the user through several data processing steps leading to a set of performance indicators as output. We present an example of the usage of this software for evaluating walking in an unloading exoskeleton that allows a person to step in simulated reduced (the Moon's) gravity. By analyzing the EMG activity from lower limb muscles, the algorithms detected several performance indicators demonstrating differential adaptation (shifts in the center of activity, prolonged activation) of specific muscle activation modules and spinal motor pools and increased coactivation of lumbar and sacral segments. The software is integrated at EUROBENCH facilities to benchmark the performance of walking in the exoskeleton from the point of view of changes in the spinal locomotor output.


Assuntos
Exoesqueleto Energizado , Marcha/fisiologia , Humanos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia
20.
Brain Commun ; 4(4): fcac200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35974798

RESUMO

The Fugl-Meyer Assessment is widely used to test motor function in stroke survivors. In the Fugl-Meyer Assessment, stroke survivors perform several movement tasks and clinicians subjectively rate the performance of each task item. The individual task items in the Fugl-Meyer Assessment are selected on the basis of clinical experience, and their physiological relevance has not yet been evaluated. In the present study, we aimed to objectively rate the performance of task items by measuring the muscle activity of 41 muscles from the upper body while stroke survivors and healthy participants performed 37 Fugl-Meyer Assessment upper extremity task items. We used muscle synergy analysis to compare muscle activity between subjects and found that 13 muscle synergies in the healthy participants (which we defined as standard synergies) were able to reconstruct all of the muscle activity in the Fugl-Meyer Assessment. Among the standard synergies, synergies involving the upper arms, forearms and fingers were activated to varying degrees during different task items. In contrast, synergies involving posterior trunk muscles were activated during all tasks, which suggests the importance of posterior trunk muscle synergies throughout all sequences. Furthermore, we noted the inactivation of posterior trunk muscle synergies in stroke survivors with severe but not mild impairments, suggesting that lower trunk stability and the underlying activity of posterior trunk muscle synergies may have a strong influence on stroke severity and recovery. By comparing the synergies of stroke survivors with standard synergies, we also revealed that some synergies in stroke survivors corresponded to merged standard synergies; the merging rate increased with the impairment of stroke survivors. Moreover, the degrees of severity-dependent changes in the merging rate (the merging rate-severity relationship) were different among different task items. This relationship was significant for 26 task items only and not for the other 11 task items. Because muscle synergy analysis evaluates coordinated muscle activities, this different dependency suggests that these 26 task items are appropriate for evaluating muscle coordination and the extent of its impairment in stroke survivors. Overall, we conclude that the Fugl-Meyer Assessment reflects physiological function and muscle coordination impairment and suggest that it could be performed using a subset of the 37 task items.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...