Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(5): 145, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656715

RESUMO

CONTEXT: A complex supramolecular process involving electrostatic and dispersion interactions and asphaltene aggregation is associated with detrimental petroleum deposition and scaling that pose challenges to petroleum recovery, transportation, and upgrading. The homodimers of seven heterocyclic model compounds, representative of moieties commonly found in asphaltene structures, were studied: pyridine, thiophene, furan, isoquinoline, pyrazine, thiazole, and 1,3-oxazole. The contributions of hydrogen bonding involving water bridges spanning between dimers and π-π stacking to the total interaction energy were calculated and analyzed. The distance between the planes of the aromatic rings is correlated with the π-π stacking interaction strength. All the dimerization reactions were exothermic, although not spontaneous. This was mostly modulated by the strength of the hydrogen bond of the water bridge and the π-π stacking interaction. Dimers bridged by two water molecules were more stable than those with additional water molecules or without any water molecule in the bridge. Energy decomposition analysis showed that the electrostatic and polarization components were the main stabilizing terms for the hydrogen bond interaction in the bridge, contributing at least 80% of the interaction energy in all dimers. The non-covalent interaction analysis confirmed the molecular sites that had the strongest (hydrogen bond) and weak (π-π stacking) attractive interactions. They were concentrated in the water bridge and in the plane between the aromatic rings, respectively. METHODS: The density functional ωB97X-D with a dispersion correction and the Def2-SVP basis set were employed to investigate supramolecular aggregates incorporating heterocycles dimers with 0, 1, 2, and 3 water molecules forming a stabilizing bridge connecting the monomers. The non-covalent interactions were analyzed using the NCIplot software and plotted as isosurface maps using Visual Molecular Dynamics.

2.
J Phys Chem A ; 125(12): 2413-2424, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33759531

RESUMO

The conversion of CO2 into dimethyl carbonate (DMC) is an environmental and industrial appealing topic because it contributes to reduce the emissions of CO2 and to increase its use as raw material. In the present study we employed the CAM-B3LYP/def2-SVP DFT approach to evaluate the thermodynamic and kinetic parameters for the catalytic conversion of CO2 and methanol into DMC. Starting with the activation of four methanol molecules by the [Me2SnO]2 dimer, we computed all the stationary points along the pathway to convert CO2 and methanol into the DMC. The capture of two CO2 molecules is promoted by an alkoxitin intermediate, in an exothermic process, with low activation energy. Formation of a first DMC occurs after an intramolecular rerrangement involving a tetrahedral intermediate. The formation of a second DMC may occur either in a process similar to the first one or by dimerization of the hemicarbonate formed after releasing the first DMC. In this pathway, the [Me2(OH)SnO(OMe)SnMe2]2 complex is formed. This complex is less reactive than [Me2Sn(OMe)2]2 but still conserves the catalytic activity. Identification of this mechanism suggests that the catalytic action of Me2SnO can be improved by modulating the formation of the final [Me2(OH)SnO(OMe)SnMe2]2 complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...