Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(7): e0254413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264990

RESUMO

The best agro-industrial performance presented by a crop genotype in one environment may not be reproduced in another owing to complex edaphoclimatic variations. Therefore, breeding programs are constantly attempting to obtain, through artificial hybridization, novel genotypes with high adaptability and stability potential. The objective of this study was to analyze genetic divergence in sugarcane based on the genotypic values of adaptability and stability. A total of 11 sugarcane genotypes were analyzed for eight agro-industrial traits. The genotypic values of the traits were determined using mixed model methodology, and the genetic divergence based on phenotypic and genotypic values was measured using the Mahalanobis distance. The distance matrices were correlated using the Mantel test, and the genotypes were grouped using the Tocher method. Genetic divergence is more accurate when based on genotypic values free of genotype-environment interactions and will differ from genetic divergence based on phenotypic data, changing the genotype allocations in the groups. The above methodology can be applied to assess genetic divergence to obtain novel sugarcane genotypes with higher productivity that are adapted to intensive agricultural systems using diverse technologies. This methodology can also be tested in other crops to increase accuracy in selecting the parents to be crossed.


Assuntos
Variação Genética , Deriva Genética , Genótipo , Fenótipo , Melhoramento Vegetal , Saccharum
2.
PLoS One ; 14(12): e0214778, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31877130

RESUMO

Mathematical models that describe gas production are widely used to estimate the rumen degradation digestibility and kinetics. The present study presents a method to generate models by combining existing models and to propose the von Bertalanffy-Gompertz two-compartment model based on this method. The proposed model was compared with the logistic two-compartment one to indicate which best describes the kinetic curve of gas production through the semi-automated in vitro technique from different pinto peanut cultivars. The data came from an experiment grown and harvested at the Far South Animal Sciences station (Essul) in Itabela, BA, Brazil and gas production was read at 2, 4, 6, 8, 10, 12, 14, 17, 20, 24, 28, 32, 48, 72, and 96 h after the start of the in vitro fermentation process. The parameters were estimated by the least squares method using the iterative Gauss-Newton process in the software R version 3.4.1. The best model to describe gas accumulation was based on the adjusted coefficient of determination, residual mean squares, mean absolute deviation, Akaike information criterion, and Bayesian information criterion. The von Bertalanffy-Gompertz two-compartment model had the best fit to describe the cumulative gas production over time according to the methodology and conditions of the present study.


Assuntos
Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Fermentação/fisiologia , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Animais , Teorema de Bayes , Brasil , Cinética , Modelos Biológicos , Modelos Teóricos , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...