Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Genomics ; 13(1): 21, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32039725

RESUMO

BACKGROUND: The Hereditary Breast and Ovarian Cancer Syndrome (HBOC) occurs in families with a history of breast/ovarian cancer, presenting an autosomal dominant inheritance pattern. BRCA1 and BRCA2 are high penetrance genes associated with an increased risk of up to 20-fold for breast and ovarian cancer. However, only 20-30% of HBOC cases present pathogenic variants in those genes, and other DNA repair genes have emerged as increasing the risk for HBOC. In Brazil, variants in ATM, ATR, CHEK2, MLH1, MSH2, MSH6, POLQ, PTEN, and TP53 genes have been reported in up to 7.35% of the studied cases. Here we screened and characterized variants in 21 DNA repair genes in HBOC patients. METHODS: We systematically analyzed 708 amplicons encompassing the coding and flanking regions of 21 genes related to DNA repair pathways (ABRAXAS1, ATM, ATR, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MLH1, MRE11, MSH2, MSH6, NBN, PALB2, PMS2, PTEN, RAD50, RAD51, TP53 and UIMC1). A total of 95 individuals with HBOC syndrome clinical suspicion in Southeast Brazil were sequenced, and 25 samples were evaluated for insertions/deletions in BRCA1/BRCA2 genes. Identified variants were assessed in terms of population allele frequency and their functional effects were predicted through in silico algorithms. RESULTS: We identified 80 variants in 19 genes. About 23.4% of the patients presented pathogenic variants in BRCA1, BRCA2 and TP53, a frequency higher than that identified among previous studies in Brazil. We identified a novel variant in ATR, which was predicted as pathogenic by in silico tools. The association analysis revealed 13 missense variants in ABRAXAS1, BARD1, BRCA2, CHEK2, CDH1, MLH1, PALB2, and PMS2 genes, as significantly associated with increased risk to HBOC, and the patients carrying those variants did not present large insertions or deletions in BRCA1/BRCA2 genes. CONCLUSIONS: This study embodies the third report of a multi-gene analysis in the Brazilian population, and addresses the first report of many germline variants associated with HBOC in Brazil. Although further functional analyses are necessary to better characterize the contribution of those variants to the phenotype, these findings would improve the risk estimation and clinical follow-up of patients with HBOC clinical suspicion.


Assuntos
Algoritmos , Simulação por Computador , Mutação em Linhagem Germinativa , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Mutação INDEL , Proteínas de Neoplasias/genética , Adulto , Idoso , Brasil , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Nucleic Acids Res ; 47(20): 10662-10677, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31586400

RESUMO

While biallelic mutations in the PALB2 tumor suppressor cause Fanconi anemia subtype FA-N, monoallelic mutations predispose to breast and familial pancreatic cancer. Although hundreds of missense variants in PALB2 have been identified in patients to date, only a few have clear functional and clinical relevance. Herein, we investigate the effects of 44 PALB2 variants of uncertain significance found in breast cancer patients and provide detailed analysis by systematic functional assays. Our comprehensive functional analysis reveals two hotspots for potentially deleterious variations within PALB2, one at each terminus. PALB2 N-terminus variants p.P8L [c.23C>T], p.Y28C [c.83A>G], and p.R37H [c.110G>A] compromised PALB2-mediated homologous recombination. At the C-terminus, PALB2 variants p.L947F [c.2841G>T], p.L947S [c.2840T>C], and most strikingly p.T1030I [c.3089C>T] and p.W1140G [c.3418T>C], stood out with pronounced PARP inhibitor sensitivity and cytoplasmic accumulation in addition to marked defects in recruitment to DNA damage sites, interaction with BRCA2 and homologous recombination. Altogether, our findings show that a combination of functional assays is necessary to assess the impact of germline missense variants on PALB2 function, in order to guide proper classification of their deleteriousness.


Assuntos
Neoplasias da Mama/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Mutação de Sentido Incorreto/genética , Linhagem Celular Tumoral , Simulação por Computador , Dano ao DNA , Feminino , Loci Gênicos , Recombinação Homóloga/genética , Humanos , Cinética , Rad51 Recombinase/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...