Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 29(1): 54-60, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18927469

RESUMO

OBJECTIVE: Epoxyeicosatrienoic acids (EETs) serve as endothelial-derived hyperpolarizing factors (EDHF), but may also affect vascular function by other mechanisms. We identified a novel interaction between EETs and endothelial NO release using soluble epoxide hydrolase (sEH) -/- and +/+ mice. METHODS AND RESULTS: EDHF responses to acetylcholine in pressurized isolated mesenteric arteries were neither affected by the sEH inhibitor, N-adamantyl-N'-dodecylurea (ADU), nor by sEH gene deletion. However, the EDHF responses were abolished by catalase and by apamin/charybdotoxin (ChTx), but not by iberiotoxin, nor by the cytochrome P450 inhibitor PPOH. All four EETs (order of potency: 8,9-EET >14,15-EET approximately 5,6-EET >11,12-EET) and all 4 dihydroxy derivatives (14,15-DHET approximately 8,9-DHET approximately 11,12-DHET >5,6-DHET) produced dose-dependent vasodilation. Endothelial removal or L-NAME blocked 8,9-EET and 14,15-DHET-dependent dilations. The effects of apamin/ChTx were minimal. 8,9-EET and 14,15-DHET induced NO production in endothelial cells. ADU (100 microg/mL in drinking water) lowered blood pressure in angiotensin II-infused hypertension, but not in L-NAME-induced hypertension. Blood pressure and EDHF responses were similar in L-NAME-treated sEH +/+ and -/- mice. CONCLUSIONS: Our data indicate that the EDHF response in mice is caused by hydrogen peroxide, but not by P450 eicosanoids. Moreover, P450 eicosanoids are vasodilatory, largely through their ability to activate endothelial NO synthase (eNOS) and NO release.


Assuntos
Artérias/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides/fisiologia , Tono Muscular/fisiologia , Óxido Nítrico/fisiologia , Vasodilatação/fisiologia , Animais , Artérias/efeitos dos fármacos , Fatores Biológicos/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Catalase/metabolismo , Charibdotoxina/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Eicosanoides/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Epóxido Hidrolases/deficiência , Epóxido Hidrolases/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Rim/efeitos dos fármacos , Rim/fisiologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Peptídeos/farmacologia , Vasodilatação/efeitos dos fármacos
2.
J Am Soc Hypertens ; 2(6): 403-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-20409924

RESUMO

G protein-coupled receptors (GPCRs) are expressed ubiquitously and involved in a variety of physiologic and pathologic processes. One of the key steps in the GPCR signaling cascade is the phosphorylation of the Galpha-subunit that triggers its dissociation from the Gbetagamma-subunit and from the receptor, allowing both G protein subunits to activate different downstream second messengers. Thereafter, Galpha hydrolyzes the attached guanosine triphosphate (GTP) to guanosine diphosphate (GDP) by its inherent enzymatic activity and terminates signaling. Small/connecting proteins that act as GTPase activating proteins (GAP) accelerate this process. Regulator of G protein signaling (RGS) proteins play a key role in the regulation of GPCRs, by acting as GAP and increasing the rate of GPCRs deactivation. RGS2 affects GPCR-dependent and GPCR-independent pathways. RGS2 -/- displayed an increase of blood pressure (BP) mainly by an increase of total peripheral resistance. After N(omega)-nitro-L-arginine methyl ester (L-NAME) RGS2 -/- mice responded with a smaller BP increase during the day than RGS2 +/+, suggesting an impaired NO signaling. Infusion of angiotensin II increased BP stronger in RGS2 -/- compared with RGS2 +/+. In summary, GPCR-dependent and GPCR-independent pathways are involved in BP changes of RGS2 -/- mice. Interactions between GPCRs and RGS2 represent a regulatory mechanism for fine-tuning of BP which may be important for hypertension and may be considered as a potentially novel drug target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA