Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Metastasis ; 37(4): 489-497, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394234

RESUMO

Tissue factor (TF), a blood coagulation protein, plays an important role in tumor growth, invasion, and metastasis. Ixolaris, a tick-derived non-immunogenic molecule that binds to TF, has demonstrated in vivo inhibitory effect on murine models of melanoma, including primary growth and metastasis. This work aimed to: I) develop an efficient and stable labeling technique of ixolaris with Iodine-131(131I); II) compare the biodistribution of 131I and 131I-ixolaris in tumor-free and melanoma-bearing mice; III) evaluate whether 131I-ixolaris could serve as an antimetastatic agent. Ixolaris radioiodination was performed using iodogen, followed by liquid paper chromatography. Labeling stability and anticoagulant activity were measured. Imaging studies were performed after intravenous administration of free 131I or 131I-ixolaris in a murine melanoma model employing the B16-F10 cell line. Animals were divided in three experimental groups: the first experimental group, D0, received a single-dose of 9.25 MBq of 131I-ixolaris at the same day the animals were inoculated with melanoma cells. In the second group, D15, a single-dose of 9.25 MBq of 131I-ixolaris or free 131I was applied into mice on the fifteenth day after the tumor induction. The third group, D1-D15, received two therapeutic doses of 9.25 MBq of 131I-ixolaris or 131I. In vitro studies demonstrated that 131I-ixolaris is stable for up to 24 h and retains its inhibitory activity on blood coagulation. Biodistribution analysis and metastasis assays showed that all treatment regimens with 131I-ixolaris were effective, being the double-treatment (D1/D15) the most effective one. Remarkably, treatment with free 131I showed no anti-metastatic effect. 131I-ixolaris is a promising theranostic agent for metastatic melanoma.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Medicina de Precisão/métodos , Proteínas e Peptídeos Salivares/farmacologia , Tromboplastina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Radioisótopos do Iodo/farmacologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas e Peptídeos Salivares/metabolismo , Proteínas e Peptídeos Salivares/farmacocinética
2.
Stem Cells Int ; 2016: 3140120, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26880951

RESUMO

Even though heart diseases are amongst the main causes of mortality and morbidity in the world, existing treatments are limited in restoring cardiac lesions. Cell transplantations, originally developed for the treatment of hematologic ailments, are presently being explored in preclinical and clinical trials for cardiac diseases. Nonetheless, little is known about the possible efficacy and mechanisms for these therapies and they are the center of continuous investigation. In this scenario, noninvasive imaging techniques lead to greater comprehension of cell therapies. Radiopharmaceutical cell labeling, firstly developed to track leukocytes, has been used successfully to evaluate the migration of cell therapies for myocardial diseases. A substantial rise in the amount of reports employing this methodology has taken place in the previous years. We will review the diverse radiopharmaceuticals, imaging modalities, and results of experimental and clinical studies published until now. Also, we report on current limitations and potential advances of radiopharmaceutical labeling for cell therapies in cardiac diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...