Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 453: 139605, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788641

RESUMO

Minerals are reported to dominate the electrical properties of honey and indicate its botanical and geographical origins. In this study, Electrochemical Impedance Spectroscopy (EIS) was used to assess the relation between mineral elements, electrical properties and botanical origin using three honey varieties - Citrus sp., Eucalyptus sp., and Erica sp. These varieties are identified through pollen analysis and market labelling. Flame atomic absorption and emission spectroscopies were used to quantify the concentrations of eight elements (potassium, sodium, calcium, magnesium, manganese, zinc, copper, and iron). Among all the mineral elements, potassium showed a consistent correlation with impedance. The potassium estimation in honey and standard solutions (calibration curve) had similar sensitivities of 153.43 nF/mM and 132.68 nF/mM, respectively. Additionally, the analysis revealed that potassium dominates the mineral composition, with the other species present in minimal quantities. The EIS technique showed high sensitivity to potassium and other ionisable species, making it possible to classify the botanical origin of these three honey types. The EIS technique proved to be both time and cost effective, yielding a classification rate higher than that achieved by analysing mineral composition.


Assuntos
Espectroscopia Dielétrica , Mel , Potássio , Mel/análise , Mel/classificação , Potássio/análise , Citrus/química , Citrus/classificação
2.
Antioxidants (Basel) ; 12(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37371994

RESUMO

Acne vulgaris is an inflammatory dermatological pathology that affects mostly young people. However, it can also appear in adulthood, mainly in women. It has a high psychosocial impact, not only at the time of active lesions but also due to the consequences of lesions such as scarring and hyperpigmentation. Several factors are involved in the physiopathology of acne and the constant search for active ingredients is a reality, namely phytotherapeutic ingredients. Tea tree oil is an essential oil extracted from Melaleuca alternifolia (Maiden & Betch) Cheel with known antibacterial, anti-inflammatory, and antioxidant properties, making it a candidate for the treatment of acne. This review aims to describe the various properties of tea tree oil that make it a possible ingredient to use in the treatment of acne and to present several human studies that have evaluated the efficacy and safety of using tea tree oil in the treatment of acne. It can be concluded that tea tree oil has good antibacterial, anti-inflammatory, and antioxidant properties that result in a decrease in the number of inflammatory lesions, mainly papules, and pustules. However, given the diversity of study designs, it is not possible to draw concrete conclusions on the efficacy and safety of this oil in the treatment of acne.

3.
Biomacromolecules ; 6(4): 2164-71, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16004459

RESUMO

The stability of DNA in solution and the phase behavior in mixtures with dodecyltrimethylammonium bromide (DTAB) were investigated. By means of circular dichroism, UV absorption, and differential scanning calorimetry, we found that for dilute solutions of DNA with no addition of salt the DNA molecules are in the single-stranded conformation, whereas the addition of a small amount of NaBr, 1 mM, is sufficient to stabilize the DNA double-helix. Furthermore, at higher DNA concentrations, native DNA becomes the most stable structure, which is due to a self-screening effect. By phase diagram determinations of the DNA-surfactant system, we found that the effect of salt on phase behavior mainly relates to a difference in interaction of the amphiphile between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). The difference in association between ss and dsDNA with surfactants of different chain lengths can be interpreted in terms of an interplay between hydrophobic and electrostatic interactions, the latter being influenced by polymer flexibility. In this way, a nonmonotonic variation can be rationalized. A crossing of the phase separation lines with DNA concentration can be rationalized in terms of a change in relative stability of ss and dsDNA. The fact that ssDNA phase separates earlier than dsDNA in association with DTAB, may serve as a basis for a method of easily separating dsDNA from ssDNA by the addition of surfactant; this is verified as monitored by circular dichroism measurements.


Assuntos
DNA/química , Tensoativos/química , Varredura Diferencial de Calorimetria , Cátions , Dicroísmo Circular , Espectrofotometria Ultravioleta , Eletricidade Estática
4.
Photochem Photobiol Sci ; 2(5): 569-75, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12803080

RESUMO

A detailed analysis of the photophysical behaviour of uranyl ion in aqueous solutions at room temperature is given using literature data, together with results of new experimental and theoretical studies to see whether the decay mechanism of the lowest excited state involves physical deactivation by energy transfer or a chemical process through hydrogen atom abstraction. Comparison of the radiative lifetimes determined from quantum yield and lifetime data with that obtained from the Einstein relationship strongly suggests that the emitting state is identical to that observed in the lowest energy absorption band. From study of the experimental rate and that calculated theoretically, from deuterium isotope effects and the activation energy for decay support is given to a deactivation mechanism of hydrogen abstraction involving water clusters to give uranium(v) and hydroxyl radicals. Support for hydroxyl radical formation comes from electron spin resonance spectra observed in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide and tert-butyl-N-phenylnitrone and from literature results on photoinduced uranyl oxygen exchange and photoconductivity. It has previously been suggested that the uranyl emission above pH 1.5 may involve an exciplex between excited uranyl ion and uranium(v). Evidence against this mechanism is given on the basis of quenching of uranyl luminescence by uranium(v), together with other kinetic reasoning. No overall photochemical reaction is observed on excitation of aqueous uranyl solutions, and it is suggested that this is mainly due to reoxidation of UO2+ by hydroxyl radicals in a radical pair. An alternative process involving oxidation by molecular oxygen is analysed experimentally and theoretically, and is suggested to be too slow to be a major reoxidation pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...