Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 1598, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338088

RESUMO

B-1 cells can directly and indirectly influence the immune response. These cells are known to be excellent producers of natural antibodies and can secrete a variety of immunomodulatory molecules. They are also able to differentiate into B-1 cell-derived phagocytes (B-1CDP). B-1 cells can modulate macrophages to become less effective, and B-1CDP cells are more susceptible in infection models. In this work, we investigated the microbicidal ability of these cells in Trypanosoma cruzi infection in vitro. The results show that macrophages from BALB/c mice are more susceptible to infection than macrophages from XID mice. The resistance observed in macrophages from XID mice was abolished in the presence of B-1 cells, and this event seems to be associated with IL-10 production by B-1 cells, which may have contributed to the decrease of NO production. Additionally, B-1CDP cells were more permissive to intracellular T. cruzi infection than peritoneal macrophages. These findings strongly suggest that B-1 cells and B-1CDP cells have a potential role in the persistence of the parasite in host cells.

2.
Front Immunol ; 8: 604, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620374

RESUMO

Trypanosoma cruzi is an obligatory intracellular protozoan parasite, and it is the etiological agent of Chagas' disease that is endemic in the Americas. In addition to humans, a wide spectrum of mammals can be infected by T. cruzi, including dogs. Dogs develop acute and chronic disease, similar to human infection. T. cruzi can infect almost all cell types and after cell invasion, the metacyclics trypomastigotes localize in the cytoplasm, where they transform into amastigotes, the replicative form of T. cruzi in mammals. After amastigote multiplication and differentiation, parasites lyse host cells and spread through the body by blood circulation. In this work, we evaluated the in vitro ability of T. cruzi to infect a canine macrophage cell line DH82 compared with RAW264.7, a murine tissue culture macrophage. Our results have shown that the T. cruzi is able to infect, replicate and differentiate in DH82 cell line. We observed that following treatment with LPS and IFN-γ DH82 cells were more resistant to infection and that resistance was not related reactive oxygen species production in our system. In this study, we also found that DH82 cells became more susceptible to T. cruzi infection when cocultured with apoptotic cells. The analysis of cytokine production has showed elevated levels of the TGF-ß, IL-10, and TNF-α produced by T. cruzi-infected canine macrophages. Additionally, we demonstrated a reduced expression of the MHC class II and CD80 by infected DH82 cell line.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...