Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 12940, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737336

RESUMO

The Devonian Frasnian-Famennian (F-F) boundary marks one of the five main extinction intervals of the Phanerozoic Aeon. This time was characterized by two pulses of oceanic anoxia, named the Lower and Upper Kellwasser events, during which massive marine biodiversity losses occurred. This paper presents high-resolution magnetic susceptibility, X-ray fluorescence elemental geochemistry and carbon isotope datasets obtained from the Steinbruch Schmidt F-F boundary section (Germany). These records lead to an astronomical time calibration of the environmental changes associated with the two ocean anoxia pulses. Cyclostratigraphic interpretation indicates deposition of the black argillaceous Lower and Upper Kellwasser horizons over ~ 90 and ~ 110 kyr, respectively; approximately equivalent to the duration of one short eccentricity cycle. This study confirms that the succession of events within the Upper Kellwasser event is paced by obliquity, under a low-eccentricity orbit. Hence, astronomical insolation forcing likely contributed to the expansion of ocean anoxia and other environmental perturbations associated with these two crises. The new floating chronology established for the Steinbruch Schmidt section is anchored in numerical time by means of a radio-isotopic date, obtained from a bentonite layer interbedded between the two Kellwasser horizons. After anchoring, this time scale gives a high-precision age of 371.870 ± 0.108 Ma for the F-F boundary.

2.
Nat Commun ; 8(1): 2268, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273792

RESUMO

The Late Devonian envelops one of Earth's big five mass extinction events at the Frasnian-Famennian boundary (374 Ma). Environmental change across the extinction severely affected Devonian reef-builders, besides many other forms of marine life. Yet, cause-and-effect chains leading to the extinction remain poorly constrained as Late Devonian stratigraphy is poorly resolved, compared to younger cataclysmic intervals. In this study we present a global orbitally calibrated chronology across this momentous interval, applying cyclostratigraphic techniques. Our timescale stipulates that 600 kyr separate the lower and upper Kellwasser positive δ13C excursions. The latter excursion is paced by obliquity and is therein similar to Mesozoic intervals of environmental upheaval, like the Cretaceous Ocean-Anoxic-Event-2 (OAE-2). This obliquity signature implies coincidence with a minimum of the 2.4 Myr eccentricity cycle, during which obliquity prevails over precession, and highlights the decisive role of astronomically forced "Milankovitch" climate change in timing and pacing the Late Devonian mass extinction.

3.
Sci Rep ; 7(1): 2557, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566703

RESUMO

The geological record contains evidence for numerous pronounced perturbations in the global carbon cycle, some of which are associated with mass extinction. In the Carnian (Late Triassic), evidence from sedimentology and fossil pollen points to a significant change in climate, resulting in biotic turnover, during a time termed the 'Carnian Pluvial Episode' (CPE). Evidence from the marine realm suggests a causal relationship between the CPE, a global 'wet' period, and the injection of light carbon into the atmosphere. Here we provide the first evidence from a terrestrial stratigraphic succession of at least five significant negative C-isotope excursions (CIE)'s through the CPE recorded in both bulk organic carbon and compound specific plant leaf waxes. Furthermore, construction of a floating astronomical timescale for 1.09 Ma of the Late Triassic, based on the recognition of 405 ka eccentricity cycles in elemental abundance and gamma ray (GR) data, allows for the estimation of a duration for the isotope excursion(s). Source mixing calculations reveal that the observed substantial shift(s) in δ13C was most likely caused by a combination of volcanic emissions, subsequent warming and the dissociation of methane clathrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...