Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922857

RESUMO

Species are often expected to shift their distributions either poleward or upslope to evade warming climates and colonise new suitable climatic niches. However, from 18-years of fixed transect monitoring data on 88 species of butterfly in the midwestern United States, we show that butterflies are shifting their centroids in all directions, except towards regions that are warming the fastest (southeast). Butterflies shifted their centroids at a mean rate of 4.87 km year-1. The rate of centroid shift was significantly associated with local climate change velocity (temperature by precipitation interaction), but not with mean climate change velocity throughout the species' ranges. Species tended to shift their centroids at a faster rate towards regions that are warming at slower velocities but increasing in precipitation velocity. Surprisingly, species' thermal niche breadth (range of climates butterflies experience throughout their distribution) and wingspan (often used as metric for dispersal capability) were not correlated with the rate at which species shifted their ranges. We observed high phylogenetic signal in the direction species shifted their centroids. However, we found no phylogenetic signal in the rate species shifted their centroids, suggesting less conserved processes determine the rate of range shift than the direction species shift their ranges. This research shows important signatures of multidirectional range shifts (latitudinal and longitudinal) and uniquely shows that local climate change velocities are more important in driving range shifts than the mean climate change velocity throughout a species' entire range.

2.
Conserv Physiol ; 11(1): coad058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547363

RESUMO

Physiological traits are often used for vulnerability assessments of organismal responses to climate change. Trait values can change dramatically over the life cycle of organisms but are typically assessed at a single developmental stage. Reconciling ontogenetic changes in physiological traits with vulnerability assessments often reveals early life-stage vulnerabilities. The degree to which ontogenetic changes in physiological traits are due to changes in body mass over development versus stage-specific responses determines the degree to which mass can be used as a proxy for vulnerability. Here, we use the painted lady butterfly, Vanessa cardui, to test ontogenetic changes in two physiological traits, the acute thermal sensitivity of routine metabolic rate (RMR Q10) and the critical thermal maximum (CTmax). RMR Q10 generally followed ontogenetic changes in body mass, with stages characterized by smaller body mass exhibiting lower acute thermal sensitivity. However, CTmax was largely decoupled from ontogenetic changes in body mass. In contrast with trends from other studies showing increasing vulnerability among progressively earlier developmental stages, our study revealed highly erratic patterns of vulnerability across ontogeny. Specifically, we found the lowest joint-trait vulnerability (both RMR Q10 and CTmax) in the earliest developmental stage we tested (3rd instar larvae), the highest vulnerabilities in the next two developmental stages (4th and 5th instar larvae), and reduced vulnerability into the pupal and adult stages. Our study supports growing evidence of mechanistic decoupling of physiology across developmental stages and suggests that body mass is not a universal proxy for all physiological trait indicators of climate vulnerability.

3.
Biol Lett ; 19(5): 20220589, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37222245

RESUMO

Studying rapid biological changes accompanying the introduction of alien organisms into native ecosystems can provide insights into fundamental ecological and evolutionary theory. While powerful, this quasi-experimental approach is difficult to implement because the timing of invasions and their consequences are hard to predict, meaning that baseline pre-invasion data are often missing. Exceptionally, the eventual arrival of Varroa destructor (hereafter Varroa) in Australia has been predicted for decades. Varroa is a major driver of honeybee declines worldwide, particularly as vectors of diverse RNA viruses. The detection of Varroa in 2022 at over a hundred sites poses a risk of further spread across the continent. At the same time, careful study of Varroa's spread, if it does become established, can provide a wealth of information that can fill knowledge gaps about its effects worldwide. This includes how Varroa affects honeybee populations and pollination. Even more generally, Varroa invasion can serve as a model for evolution, virology and ecological interactions between the parasite, the host and other organisms.


Assuntos
Ecossistema , Parasitos , Animais , Abelhas , Austrália , Polinização
4.
Sci Total Environ ; 865: 161049, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36549538

RESUMO

The resilience of ecosystem function under global climate change is governed by individual species vulnerabilities and the functional groups they contribute to (e.g. decomposition, primary production, pollination, primary, secondary and tertiary consumption). Yet it remains unclear whether species that contribute to different functional groups, which underpin ecosystem function, differ in their vulnerability to climate change. We used existing upper thermal limit data across a range of terrestrial species (N = 1701) to calculate species warming margins (degrees distance between a species upper thermal limit and the maximum environmental temperature they inhabit), as a metric of climate change vulnerability. We examined whether species that comprise different functional groups exhibit differential vulnerability to climate change, and if vulnerability trends change across geographic space while considering evolutionary history. Primary producers had the broadest warming margins across the globe (µ = 18.72 °C) and tertiary consumers had the narrowest warming margins (µ = 9.64 °C), where vulnerability tended to increase with trophic level. Warming margins had a nonlinear relationship (second-degree polynomial) with absolute latitude, where warming margins were narrowest at about 33°, and were broader at lower and higher absolute latitudes. Evolutionary history explained significant variation in species warming margins, as did the methodology used to estimate species upper thermal limits. We investigated if variation in body mass across the trophic levels could explain why higher trophic level organisms had narrower warming margins than lower trophic level organisms, however, we did not find support for this hypothesis. This study provides a critical first step in linking individual species vulnerabilities with whole ecosystem responses to climate change.


Assuntos
Mudança Climática , Ecossistema , Temperatura , Evolução Biológica
5.
J Exp Biol ; 224(Pt 1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33257439

RESUMO

Anthropogenic climate change and invasive species are two of the greatest threats to biodiversity, affecting the survival, fitness and distribution of many species around the globe. Invasive species are often expected to have broad thermal tolerance, be highly plastic, or have high adaptive potential when faced with novel environments. Tropical island ectotherms are expected to be vulnerable to climate change as they often have narrow thermal tolerance and limited plasticity. In Fiji, only one species of endemic bee, Homalictus fijiensis, is commonly found in the lowland regions, but two invasive bee species, Braunsapis puangensis and Ceratina dentipes, have recently been introduced into Fiji. These introduced species pollinate invasive plants and might compete with H. fijiensis and other native pollinators for resources. To test whether certain performance traits promote invasiveness of some species, and to determine which species are the most vulnerable to climate change, we compared the thermal tolerance, desiccation resistance, metabolic rate and seasonal performance adjustments of endemic and invasive bees in Fiji. The two invasive species tended to be more resistant to thermal and desiccation stress than H. fijiensis, while H. fijiensis had greater capacity to adjust their CTmax with season, and H. fijiensis females tended to have higher metabolic rates than B. puangensis females. These findings provide mixed support for current hypotheses for the functional basis of the success of invasive species; however, we expect the invasive bees in Fiji to be more resilient to climate change because of their increased thermal tolerance and desiccation resistance.


Assuntos
Mudança Climática , Espécies Introduzidas , Animais , Abelhas , Biodiversidade , Feminino , Fiji , Ilhas
6.
J Anim Ecol ; 89(7): 1735-1746, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32227334

RESUMO

Rate of colour change and background matching capacity are important functional traits for avoiding predation and hiding from prey. Acute changes in environmental temperature are known to impact the rate at which animals change colour, and therefore may affect their survival. Many ectotherms have the ability to acclimate performance traits such as locomotion, metabolic rate and growth rate with changes in seasonal temperature. However, it remains unclear how other functional traits that are directly linked to behaviour and survival respond to long-term changes in temperature (within an individual's lifetime). We assessed whether the rate of colour change is altered by long-term changes in temperature (seasonal variation) and if rate of colour change can acclimate to seasonal thermal conditions. We used an intertidal rock-pool goby Bathygobius cocosensis, to test this and exposed individuals to representative seasonal mean temperatures (16 or 31°C, herein referred to cold- and warm-exposed fish respectively) for 9 weeks and then tested their rate of luminance change when placed on white and black backgrounds at acute test temperatures 16 and 31°C. We modelled rate of luminance change using the visual sensitives of a coral trout Plectropmus leopardus to determine how well gobies matched their backgrounds in terms of luminance contrast to a potential predator. After exposure to long-term seasonal conditions, the warm-exposed fish had faster rates of luminance change and matched their background more closely when tested at 31 than at 16°C. Similarly, the cold-exposed fish had faster rates of luminance change and matched their backgrounds more closely at 16°C than at 31°C. This demonstrates that rate of luminance change can be adjusted to compensate for long-term changes in seasonal temperature. This is the first study to show that animals can acclimate rate of colour change for background matching to seasonal thermal conditions. We also show that rapid changes in acute temperature reduce background matching capabilities. Stochastic changes in climate are likely to affect the frequency of predator-prey interactions which may have substantial knock-on effects throughout ecosystems.


Assuntos
Ecossistema , Peixes , Aclimatação , Animais , Comportamento Predatório , Estações do Ano , Temperatura
7.
Physiol Biochem Zool ; 92(6): 567-572, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31567049

RESUMO

Thermal physiology changes as organisms grow and develop, but we do not understand what causes these ontogenetic shifts. According to the theory of oxygen- and capacity-limited thermal tolerance, an organism's heat tolerance should change throughout ontogeny as its ability to deliver oxygen varies. As insects grow during an instar, their metabolic demand increases without a proportional increase in the size of tracheae that supply oxygen to the tissues. If oxygen delivery limits heat tolerance, the mismatch between supply and demand should make insects more susceptible to heat and hypoxia as they progress through an instar. We tested this hypothesis by measuring the heat tolerance of grasshoppers (Schistocerca americana) on the second and seventh days of the sixth instar, in either a normoxic or a hypoxic atmosphere (21% or 10% O2, respectively). As expected, heat tolerance decreased as grasshoppers grew larger. Yet contrary to expectation, hypoxia had no effect on heat tolerance across all stages and sizes. Although heat tolerance declines as grasshoppers grow, this pattern must stem from a mechanism other than oxygen limitation.


Assuntos
Gafanhotos/fisiologia , Temperatura Alta , Oxigênio/metabolismo , Termotolerância , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...