RESUMO
Senna rugosa is a species found in the Cerrado and used in folk medicine as a vermifuge and in the treatment of poisonous snakebites accidents. In this work, we identified the main secondary metabolites present in ethanolic extracts of the leaves (ELSR) and roots (ERSR) of S. rugosa and evaluated the potential cytoprotective effect against cellular macromolecular damage, as well as the cytotoxic properties of the extracts on the K562 and Jurkat leukemic cell lines. The identification of metabolites was carried out by liquid chromatography coupled with mass spectrometry. The antioxidant activities were investigated by direct ABTSâ¢+ and DPPH⢠radical scavenging methods, protection against oxidative damage in proteins, and DNA. Cytotoxic properties were investigated against healthy cells, isolated from human peripheral blood (PBMC) and leukemic cell lines. The leaf extracts contained catechin, rutin, epigallocatechin derivatives, kaempferol glycosides, luteolin, and dimeric and trimeric procyanidins, while the root extract profile showed obtusichromoneside derivatives, 2-methoxystypandrone, stilbene derivatives, naphthopyranones, and flavanone derivatives. The extracts showed antioxidant activity, with an IC50 of 4.86 ± 0.51 µg/mL and 8.33 ± 0.90 µg/mL in the ABTS assay for ELSR and ERSR, respectively. Furthermore, in the DPPH⢠assay, the IC50 was 19.98 ± 1.96 µg/mL for ELSR and 13.37 ± 1.05 µg/mL for ERSR. The extracts protected macromolecules against oxidative damage at concentrations of 5 µg/mL. The cytotoxicity test against leukemic strains was observed after 24 and 48 h of treatment. After 48 h, results against the K562 cell line demonstrate an IC50 of 242.54 ± 2.38 µg/mL and 223.00 ± 2.34 µg/mL for ELSR and ERSR, respectively. While against the Jurkat cell line, these extracts showed an IC50 of 171.45 ± 2.25 µg/mL and 189.30 ± 2.27 µg/mL, respectively. The results pertaining to PBMC viability demonstrated that the extracts showed selectivity for the leukemic cell lines. Together, our results reveal that the leaves and roots of S. rugosa have completely distinct and complex chemical compositions and expand their significant pharmacological potential in oxidative stress and leukemia conditions.
RESUMO
Snake bites are a severe problem in the countryside of Brazil and are usually attributed to snakes of the genera Bothrops, Crotalus, and Lachesis. Snake venom can release ectoenzymes and nucleotidases that modulate the purinergic system. In addition to serum therapy against snake poisoning, medicinal plants with anti-inflammatory activities, such as Tabebuia aurea, is empirically applied in accidents that occur in difficult-to-access areas. This study aimed was to verify the presence and activity of nucleotidases in the crude venom of Bothrops mattogrossensis (BmtV) in vitro and characterize the modulation of purinergic components, myeloid differentiation, and inflammatory/oxidative stress markers by BmtV in vivo and in vitro. Moreover, our study assessed the inhibitory activities of specioside, an iridoid isolated from Tabebuia aurea, against the effects of BmtV. Proteomic analysis of venom content and nucleotidase activity confirm the presence of ectonucleotidase-like enzymes in BmtV. In in vivo experiments, BmtV altered purinergic component expression (P2X7 receptor, CD39 and CD73), increased neutrophil numbers in peripheral blood, and elevated oxidative stress/inflammatory parameters such as lipid peroxidation and myeloperoxidase activity. BmtV also decreased viability and increased spreading index and phagocytic activity on macrophages. Specioside inhibited nucleotidase activity, restored neutrophil numbers, and mediate the oxidative/inflammatory effects produced by BmtV. We highlight the effects produced by BmtV in purinergic system components, myeloid differentiation, and inflammatory/oxidative stress parameters, while specioside reduced the main BmtV-dependent effects.
RESUMO
OBJECTIVE: The study's aim was to evaluate Brazilian Brown Propolis (BBP) and Artepillin C (ARC) chemopreventive action in Wistar rats' colons. METHODS: Fifty male Wistar rats were divided into ten experimental groups, including control groups, groups with and without 1,2-dimethylhydrazine (DMH) induction, and BBP, ARC, and ARC enriched fraction (EFR) treatments, for sixteen weeks. Aberrant crypt foci (ACF) were classified as hyperplastic or dysplastic, and proliferating cell nuclear antigen (PCNA) expression was quantified. RESULT: ACF amounts in experimental groups (induced or not) decreased in both colon portions, while the isolated Aberrant Crypt (AC) number increased. Experimental groups of animals showed higher hyperplasia and dysplasia amounts compared with control groups. The ACF dysplastic amount present in groups induced and treated, in both colon portions, had similar values to IDMH (DMH induction group without treatment). In addition, DMH was effective in ACF inducing and there was positive staining for PCNA in basal and upper dysplastic foci portions in all experimental groups, in the mitotic index (MI) evaluation. To conclude, considering all the experimental groups, the one treated with EFR (fraction enriched with ARC) had the lowest rates of cell proliferation. CONCLUSION: BBP and its derivatives prevented crypt cell clonal expansion.
Assuntos
Focos de Criptas Aberrantes , Antineoplásicos , Neoplasias do Colo , Fenilpropionatos , Própole , Ratos , Animais , Masculino , Ratos Wistar , Neoplasias do Colo/tratamento farmacológico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Própole/farmacologia , Própole/uso terapêutico , 1,2-Dimetilidrazina/toxicidade , Brasil , Focos de Criptas Aberrantes/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , CarcinógenosRESUMO
BACKGROUND: Breast cancer is the most commonly diagnosed cancer among women worldwide with limited treatment options. Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is one of the main constituents of Brazilian propolis presenting different activities, including antitumoral effects against various types of cancer. OBJECTIVE: We evaluated the antitumoral potential and mechanisms of action of artepillin C against two distinct human breast cancer cell lines, MCF-7 and MDA-MB-231, to explore a new therapeutic candidate. METHODS: Cell viability was assessed by MTT assay and the long-term cytotoxicity was performed by clonogenic assay. The morphological changes were observed by light microscopy, analysis of cell death pathway by Annexin V FITC/propidium iodide (PI), lactate dehydrogenase (LDH) by colorimetry, DNA fragmentation by agarose gel and senescence by ß-galactosidase. Detection of total reactive oxygen species (ROS) by fluorescence microscopy and determination of mitochondrial transmembrane potential by flow cytometry were also performed. RESULTS: Artepillin C presented a strong and dose-time-dependent cytotoxic effect on MCF-7 and MDA-MB-231 cell lines, with cytotoxicity more evident in MCF-7. In both cancer cell lines, the clonogenic potential was significantly reduced and the morphology of the cells was changed. The treatment also induced death by necrosis and late apoptosis in MCF-7 and MDA-MB-231 and induced cell senescence in MCF-7. Also, artepillin C increased total ROS in both cancer cells and decreased mitochondrial membrane potential in MDA-MB-231 cells. CONCLUSION: Artepillin C presented antitumoral potential in two human breast cancer cell lines, MCF-7, and MDA-MB-231, suggesting a new promising option for the treatment and/or chemopreventive strategy for breast cancer.
Assuntos
Antineoplásicos , Neoplasias da Mama , Fenilpropionatos , Própole , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Própole/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Brasil , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de CélulasRESUMO
Campomanesia adamantium O. Berg. is a fruit tree species native to the Brazilian Cerrado biome whose fruits are consumed raw by the population. The present study determined the chemical composition of the C. adamantium fruit pulp (FPCA) and investigated its in vitro antioxidant potential and its biological effects in a Caenorhabditis elegans model. The chemical profile obtained by LC-DAD-MS identified 27 compounds, including phenolic compounds, flavonoids, and organic carboxylic acids, in addition to antioxidant lipophilic pigments and ascorbic acid. The in vitro antioxidant activity was analysed by the radical scavenging method. In vivo, FPCA showed no acute reproductive or locomotor toxicity. It promoted protection against thermal and oxidative stress and increased the lifespan of C. elegans. It also upregulated the antioxidant enzymes superoxide dismutase and glutathione S-transferase and activated the transcription factor DAF-16. These results provide unprecedented in vitro and in vivo evidence for the potential functional use of FPCA in the prevention of oxidative stress and promotion of longevity.
Assuntos
Proteínas de Caenorhabditis elegans , Myrtaceae , Animais , Antioxidantes/farmacologia , Caenorhabditis elegans/metabolismo , Longevidade , Brasil , Frutas/metabolismo , Extratos Vegetais/química , Estresse Oxidativo , Myrtaceae/química , Proteínas de Caenorhabditis elegans/metabolismoRESUMO
In this study, a novel compound was isolated, identified, and its chemical structure was determined from the extract of the roots of Senna velutina. In addition, we sought to evaluate the anticancer potential of this molecule against melanoma and leukemic cell lines and identify the pathways of cell death involved. To this end, a novel anthraquinone was isolated from the barks of the roots of S. velutina, analyzed by HPLC-DAD, and its molecular structure was determined by nuclear magnetic resonance (NMR). Subsequently, their cytotoxic activity was evaluated by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method against non-cancerous, melanoma, and leukemic cells. The migration of melanoma cells was evaluated by the scratch assay. The apoptosis process, caspase-3 activation, analysis of mitochondrial membrane potential, and measurement of ROS were evaluated by flow cytometry technique. In addition, the pharmacological cell death inhibitors NEC-1, RIP-1, BAPTA, Z-VAD, and Z-DEVD were used to confirm the related cell death mechanisms. With the results, it was possible to elucidate the novel compound characterized as 2'-OH-Torosaol I. In normal cells, the compound showed no cytotoxicity in PBMC but reduced the cell viability of all melanoma and leukemic cell lines evaluated. 2'-OH-Torosaol I inhibited chemotaxis of B16F10-Nex2, SK-Mel-19, SK-Mel-28 and SK-Mel-103. The cytotoxicity of the compound was induced by apoptosis via the intrinsic pathway with reduced mitochondrial membrane potential, increased levels of reactive oxygen species, and activation of caspase-3. In addition, the inhibitors demonstrated the involvement of necroptosis and Ca2+ in the death process and confirmed caspase-dependent apoptosis death as one of the main programmed cell death pathways induced by 2'-OH-Torosaol I. Taken together, the data characterize the novel anthraquinone 2'-OH-Torosaol I, demonstrating its anticancer activity and potential application in cancer therapy.
RESUMO
Obesity is an epidemic disease worldwide, associated with oxidative stress and the development of several other diseases. Bauhinia rufa (Bong.) Steud. is a native Brazilian Cerrado medicinal plant popularly used for the treatment of obesity. In this context, we investigated the chemical composition of the methanolic extract of B. rufa leaves (MEBr) and evaluated the antioxidant activity and its impact on the prevention and treatment of obesity in mice fed a high-fat diet (HFD 60%). Additionally, the acute oral toxicity of MEBr was evaluated. In MEBr, 17 glycosylated compounds were identified, including myricetin, quercetin, kaempferol, coumaroyl, cyanoglucoside, and megastigmane. In vitro, MEBr showed antioxidant activity in different methods: DPPHâ¢, ABTSâ¢+, FRAP, iron-reducing power, inhibition of ß-carotene bleaching, and inhibition of DNA fragmentation. In human erythrocytes, MEBr increased the activities of antioxidant enzymes, superoxide dismutase, and catalase. Under oxidative stress, MEBr reduced oxidative hemolysis, and the malondialdehyde (MDA) levels generated in erythrocytes. Mice treated acutely with MEBr (2000 mg/kg) showed no signs of toxicity. During 90 days, the mice received water or MEBr simultaneously with HFD for induction of obesity. At this stage, MEBr was able to reduce the gain of subcutaneous white adipose tissue (WAT) and prevent the increase of MDA in the heart and brain. After 180 days of HFD for obesity induction, mice that received MEBr simultaneously with HFD (HFD-MEBr) in the last 60 days of treatment (120-180 days) showed a reduction of retroperitoneal and mesenteric WAT deposits and MDA levels in the heart, liver, kidney, and brain, compared to the HFD-Control group. These effects of MEBr were similar to mice treated with sibutramine (HFD-Sibutramine, 2 mg/kg). Combined, the results show that compounds from the leaves of B. rufa affect controlling oxidative stress and actions in the prevention and treatment of obesity. Thus, associated oxidative stress reduction and body composition modulation, in obese people, can contribute to the prevention of obesity-related comorbidities and improve quality of life.
Assuntos
Bauhinia , Dieta Hiperlipídica , Humanos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Qualidade de Vida , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Estresse Oxidativo , MetanolRESUMO
The species Annona nutans (R. E. Fries) is a plant found in Bolivia, Paraguay, Argentina and the Brazilian cerrado. Considering the anti-inflammatory and antinociceptive activities of the hydrometanolic fraction (FHMeOH) of A. nutans leaves previously reported, the present study aimed to evaluate in vivo anti-inflammatory and antinociceptive activities of a subfraction obtained from FHMeOH, the butanolic fraction (FBuOHf). Intraperitoneal (i.p.) treatment with FBuOHf (50 and 100 mg · kg-1) inhibited paw edema induced by carrageenan. Moreover, FBuOHf (100 mg · kg-1, i.p.) also suppressed polymorphonuclear (PMN) leukocyte migration in the footpad. Regarding the antinociceptive activity, FBuOHf (50, 100, and 200 mg · kg-1, i.p.) inhibited acetic acid-induced abdominal writhing. In the formalin test, this fraction (200 mg · kg-1, i.p.) reduced licking time only in the inflammatory phase. The FBuOHf contents flavonoids and cinnamic acid derivatives, such as quercetin-3-O-galactoside, quercetin-3-O-glucoside, isorhamnetin-3-O-galactoside, quercetin-3-O-ß-D-apio-furanosyl-(1â2)-galactopyranoside and chlorogenic acid, identified and quantified by LC-MS. The FBuOHf possesses anti-inflammatory and peripheral antinociceptive activities.
Assuntos
Annona , Annonaceae , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina , Edema/induzido quimicamente , Edema/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de PlantaRESUMO
The increasing emergence of multidrug-resistant (MDR) organisms in hospital infections is causing a global public health crisis. The development of drugs with effective antibiotic action against such agents is of the highest priority. In the present study, the action of Fluopsin C against MDR clinical isolates was evaluated under in vitro and in vivo conditions. Fluopsin C was produced in cell suspension culture of Pseudomonas aeruginosa LV strain, purified by liquid adsorption chromatography and identified by mass spectrometric analysis. Bioactivity, bacterial resistance development risk against clinically important pathogenic strains and toxicity in mammalian cell were initially determined by in vitro models. In vivo toxicity was evaluated in Tenebrio molitor larvae and mice. The therapeutic efficacy of intravenous Fluopsin C administration was evaluated in a murine model of Klebsiella pneumoniae (KPC) acute sepsis, using six different treatments. The in vitro results indicated MIC and MBC below 2 µg/mL and low bacterial resistance development frequency. Electron microscopy showed that Fluopsin C may have altered the exopolysaccharide matrix and caused disruption of the cell wall of MDR bacteria. Best therapeutic results were achieved in mice treated with a single dose of 2 mg/kg and in mice treated with two doses of 1 mg/kg, 8 h apart. Furthermore, acute and chronic histopathological studies demonstrated absent nephrotoxicity and moderate hepatotoxicity. The results demonstrated the efficacy of Fluopsin C against MDR organisms in in vitro and in vivo models, and hence it can be a novel therapeutic agent for the control of severe MDR infections.
RESUMO
Schinus terebinthifolius Raddi, commonly known as Brazilian peppertree, is a plant species widely used in Brazilian traditional medicine for various purposes. The objective of this study was to assess the microbiological quality, safety, chemical profile as well as antioxidant and antidiabetic potentials of different parts of S. terebinthifolius. Microbiological analysis of the methanolic extracts of the roots (MESR), stem bark (MESB) and leaves (MESL) of S. terebinthifolius showed no microbial growth. The concentrations of phenolic compounds, phenolic acids and flavonoids were determined by spectrophotometry. The phenolic compounds of the MESL were identified by liquid chromatography coupled to a diode array detector and mass spectrometer (LC-DAD-MS). The antioxidant activities of the extracts were analyzed by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical (ABTS+), fluorescence recovery after photobleaching (FRAP), reducing power, ß-carotene bleaching and malondialdehyde (MDA) assays in human erythrocytes. The antidiabetic properties of the extracts were demonstrated in vitro by their inhibition of the α-glucosidase enzyme and their anti-glycation activity via fructose and glyoxal. After showing no acute toxicity in vivo, MESL was able to lower postprandial glycemia after glucose overload in normoglycemic mice as well as the water and feed intake, liver weight, glycemia and serum levels of glycated hemoglobin, aspartate transaminase (AST) and alanine transaminase (ALT) in diabetic mice. Overall, S. terebinthifolius extracts showed microbiological safety along with antioxidant and antidiabetic activities, likely mediated by its chemical constituents, such as gallic acid, gallotannins and glycosylated flavonols.
Assuntos
Anacardiaceae/química , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Bactérias , Glicemia/efeitos dos fármacos , Teste de Tolerância a Glucose , Camundongos , Camundongos Endogâmicos C57BL , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta/química , Raízes de Plantas/química , Testes de ToxicidadeRESUMO
The antioxidant and cytotoxic activities of petroleum ether and methanol extracts, fatty acids and methyl esters from leaves of Smilax brasiliensis were evaluated, and the composition of the extracts was determined. Palmitic, linoleic and linolenic acids were major components of the extracts. For antioxidant activity, all samples exhibited IC50 values lower than BHT (2,6-di-tert-butyl-4-methylphenol). The extracts, fatty acids and methyl esters from S. brasiliensis presented no toxicity to larvae of the brine shrimp, Artemia salina. Among the purified substances, only methyl linolenate showed toxicity (LD50 = 21.47 µg/mL). This study showed, for the first time, the composition of petroleum ether and methanol extracts from S. brasiliensis leaves, as well as the antioxidant and cytotoxic activities of extracts, fatty acids and methyl esters.
Assuntos
Antioxidantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Smilax/química , Animais , Antioxidantes/química , Artemia/efeitos dos fármacos , Hidroxitolueno Butilado/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ácidos Graxos/análise , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Folhas de Planta/químicaRESUMO
Culex quinquefasciatus (Say, 1823), known as the domestic mosquito, is a common and abundant species throughout the world, and a cosmopolitan species. The adults of this mosquito are important in terms of public and animal health since they display adaptability to different hosts. In humans, they are responsible for the transmission of various diseases. One manner of control of this vector is the use of insecticidal or larvicidal products, which may have the drawback of toxicity to mammals and can be harmful to the environment. The present work evaluated the larvicidal potential of the essential oil (EO) and ascaridole-enriched fraction (EF4-5) obtained from the leaves of Peumus boldus Molina (boldo). The EO, obtained by steam distillation, was analyzed by GC/MS and fractionated on silica gel. EO and EF4-5, containing 31.4% and 89.5% ascaridole, respectively, were evaluated against C. quinquefasciatus at concentrations of 100, 50 and 25 µg/ml on the third and fourth instars. They showed lethal concentrations (LC50) of 82.14 and 41.85 µg/ml, respectively. Larvae treated with the EF4-5 showed morphological changes in the midgut, with cells possessing a cytoplasm that contained small vacuole-like structures, as well as a nucleus with decondensed chromatin and a cell apex with a short brush border. The cells of the fat body showed larger protein granules, which were acidophilic relative to the larvae of the control group. Moreover, the enriched fraction at a dose of 50 µg/ml showed a residual larvicidal effect according to exposure time on C. quinquefasciatus. This residual effect deserves consideration, since a long-term larvicidal product may be a useful tool for vector control.
Assuntos
Culex/efeitos dos fármacos , Monoterpenos/química , Óleos Voláteis/farmacologia , Peróxidos/química , Peumus/química , Animais , Monoterpenos Cicloexânicos , Cromatografia Gasosa-Espectrometria de Massas , Larva/efeitos dos fármacos , Dose Letal Mediana , Espectroscopia de Ressonância Magnética , Monoterpenos/farmacologia , Óleos Voláteis/química , Peróxidos/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/químicaRESUMO
The aim of this study was to use the pharmacokinetic information of avicularin in rats to project a dose for humans using allometric scaling. A highly sensitive and specific bioanalytical assay to determine avicularin concentrations in the plasma was developed and validated for UPLC-MS/MS. The plasma protein binding of avicularin in rat plasma determined by the ultrafiltration method was 64%. The pharmacokinetics of avicularin in nine rats was studied following an intravenous bolus administration of 1 mg/kg and was found to be best described by a two-compartment model using a nonlinear mixed effects modeling approach. The pharmacokinetic parameters were allometrically scaled by body weight and centered to the median rat weight of 0.23 kg, with the power coefficient fixed at 0.75 for clearance and 1 for volume parameters. Avicularin was rapidly eliminated from the systemic circulation within 1 h post-dose, and the avicularin pharmacokinetic was linear up to 5 mg/kg based on exposure comparison to literature data for a 5-mg/kg single dose in rats. Using allometric scaling and Monte Carlo simulation approaches, the rat doses of 1 and 5 mg/kg correspond to the human equivalent doses of 30 and 150 mg, respectively, to achieve comparable plasma avicularin concentrations in humans.
Assuntos
Bidens/química , Flavonoides/farmacocinética , Extratos Vegetais/farmacocinética , Animais , Relação Dose-Resposta a Droga , Flavonoides/administração & dosagem , Flavonoides/sangue , Humanos , Injeções Intravenosas , Masculino , Modelos Biológicos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/sangue , Ratos Wistar , Espectrometria de Massas em TandemRESUMO
Tetrahydrofuran lignans represent a well-known group of phenolic compounds capable of acting as antiparasitic agents. In the search for new medicines for the treatment of Chagas disease, one promising compound is grandisin which has shown significant activity on trypomastigote forms of Trypanosoma cruzi. In this work, the in vitro metabolism of grandisin was studied in the pig cecum model and by biomimetic phase I reactions, aiming at an ensuing a preclinical pharmacokinetic investigation. Although grandisin exhibited no metabolization by the pig microbiota, one putative metabolite was formed in a biomimetic model using Jacobsen catalyst. The putative metabolite was tested against T. cruzi revealing loss of activity in comparison to grandisin.
Assuntos
Antiprotozoários/farmacocinética , Doença de Chagas/tratamento farmacológico , Furanos/metabolismo , Furanos/farmacologia , Lignanas/metabolismo , Lignanas/farmacologia , Piper/química , Extratos Vegetais/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/química , Ceco/parasitologia , Estrutura Molecular , Extratos Vegetais/química , SuínosRESUMO
The major secondary metabolites and fatty acids occurring in the seeds of Virola surinamensis were monitored by GC-MS during germination and seedling development. The role as carbon source for seedling development was indicated considering that both classes of compounds were similarly consumed in the seeds and that no selective consumption of compounds could be detected.
RESUMO
2D DOSY 1H NMR has proved to be a useful technique in the identification of the molecular skeleton of the four major compounds of ethyl acetate extract of aerial parts of Bidens sulphurea (Asteraceae). The combination of this technique with HPLC, mass spectrometry and other NMR techniques enabled the identification of four flavonoid glycosides: quercetin-3-O-beta-D-galactopyranoside, quercetin-3-O-beta-D-glycopyranoside, quercetin-3-O-alpha-L-arabinofuranoside and quercetin-3-O-beta-D-rhamnopyranoside.