Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(22): e0127621, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34495692

RESUMO

The emergence of life-threatening zoonotic diseases caused by betacoronaviruses, including the ongoing coronavirus disease 19 (COVID-19) pandemic, has highlighted the need for developing preclinical models mirroring respiratory and systemic pathophysiological manifestations seen in infected humans. Here, we showed that C57BL/6J wild-type mice intranasally inoculated with the murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3) develop a robust inflammatory response leading to acute lung injuries, including alveolar edema, hemorrhage, and fibrin thrombi. Although such histopathological changes seemed to resolve as the infection advanced, they efficiently impaired respiratory function, as the infected mice displayed restricted lung distention and increased respiratory frequency and ventilation. Following respiratory manifestation, the MHV-3 infection became systemic, and a high virus burden could be detected in multiple organs along with morphological changes. The systemic manifestation of MHV-3 infection was also marked by a sharp drop in the number of circulating platelets and lymphocytes, besides the augmented concentration of the proinflammatory cytokines interleukin 1 beta (IL-1ß), IL-6, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor (TNF), thereby mirroring some clinical features observed in moderate and severe cases of COVID-19. Importantly, both respiratory and systemic changes triggered by MHV-3 infection were greatly prevented by blocking TNF signaling, either via genetic or pharmacologic approaches. In line with this, TNF blockage also diminished the infection-mediated release of proinflammatory cytokines and virus replication of human epithelial lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, results show that MHV-3 respiratory infection leads to a large range of clinical manifestations in mice and may constitute an attractive, lower-cost, biosafety level 2 (BSL2) in vivo platform for evaluating the respiratory and multiorgan involvement of betacoronavirus infections. IMPORTANCE Mouse models have long been used as valuable in vivo platforms to investigate the pathogenesis of viral infections and effective countermeasures. The natural resistance of mice to the novel betacoronavirus SARS-CoV-2, the causative agent of COVID-19, has launched a race toward the characterization of SARS-CoV-2 infection in other animals (e.g., hamsters, cats, ferrets, bats, and monkeys), as well as adaptation of the mouse model, by modifying either the host or the virus. In the present study, we utilized a natural pathogen of mice, MHV, as a prototype to model betacoronavirus-induced acute lung injure and multiorgan involvement under biosafety level 2 conditions. We showed that C57BL/6J mice intranasally inoculated with MHV-3 develops severe disease, which includes acute lung damage and respiratory distress that precede systemic inflammation and death. Accordingly, the proposed animal model may provide a useful tool for studies regarding betacoronavirus respiratory infection and related diseases.


Assuntos
Infecções por Coronavirus/patologia , Modelos Animais de Doenças , Pulmão/patologia , Vírus da Hepatite Murina/patogenicidade , Animais , Linhagem Celular , Contenção de Riscos Biológicos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Humanos , Inflamação , Fígado/patologia , Fígado/virologia , Pulmão/virologia , Camundongos , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Br J Nutr ; 111(4): 606-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24059468

RESUMO

Maternal undernutrition increases the risk of adult arterial hypertension. The present study investigated the short- and long-term effects of a maternal low-protein diet on respiratory rhythm, O2/CO2 chemosensitivity and arterial blood pressure (ABP) of the offspring. Male Wistar rats were divided into two groups according to their mothers' diets during gestation and lactation: control (NP, 17% of casein) and low-protein (LP, 8% of casein) groups. Direct measurements of ABP, respiratory frequency (RF), tidal volume (V T) and ventilation (VE), as well as hypercapnia (7% CO2) and hypoxia (7% O2) evoked respiratory responses were recorded from the awake male offspring at the 30th and 90th days of life. Blood samples were collected for the analyses of protein, creatinine and urea concentrations. The LP offspring had impaired body weight and length throughout the experiment. At 30 d of age, the LP rats showed a reduction in the concentrations of total serum protein (approximately 24%). ABP in the LP rats was similar to that in the NP rats at 30 d of age, but it was 20% higher at 90 d of age. With respect to ventilatory parameters, the LP rats showed enhanced RF (approximately 34%) and VE (approximately 34%) at 30 d of age, which was associated with increased ventilatory responses to hypercapnia (approximately 21% in VE) and hypoxia (approximately 82% in VE). At 90 d of age, the VE values and CO2/O2 chemosensitivity of the LP rats were restored to the control range, but the RF values remained elevated. The present data show that a perinatal LP diet alters respiratory rhythm and O2/CO2 chemosensitivity at early ages, which may be a predisposing factor for increased ABP at adulthood.


Assuntos
Pressão Sanguínea , Dieta com Restrição de Proteínas/efeitos adversos , Proteínas Alimentares/administração & dosagem , Hipertensão/etiologia , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal , Respiração , Fenômenos Fisiológicos da Nutrição Animal , Animais , Proteínas Sanguíneas/metabolismo , Tamanho Corporal , Dióxido de Carbono/sangue , Feminino , Hipercapnia , Hipertensão/sangue , Hipertensão/fisiopatologia , Hipóxia , Lactação , Oxigênio/sangue , Gravidez , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...