Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Cell ; 35(6): 1952-1960, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36053456

RESUMO

Pediatric adrenocortical tumor (ACT) is a rare and aggressive neoplasm, with incidence in southern and southeastern Brazil 10-15 times higher than worldwide. Although microRNAs (miRNAs) have been reported to act as tumor suppressors or oncogenes in several cancers, the role of miR-149-3p in ACT remains unknown. In this study, we evaluated the expression of miR-149-3p in 67 pediatric ACT samples and 19 non-neoplastic adrenal tissues. The overexpression of miR-149-3p was induced in H295A cell line, and cell viability, proliferation, colony formation, and cell cycle were assessed by in miR-149-3p mimic or mimic control. In silico analysis were used to predict miR-149-3p putative target genes. CDKN1A expression at the mRNA and protein levels was evaluated by qRT-PCR and western blot, respectively. Higher miR-149-3p expression was associated with unfavorable ACT outcomes. Compared to the mimic control, miR-149-3p overexpression increased cell viability and colony formation, and affected cell cycle progression. Also, we identified CDKN1A as a potential miR-149-3p target gene, with decreased expression at both the gene and protein levels in miR-149-3p mimic cells. Collectively, these findings suggest that miR-149-3p promotes H295A cell viability by downregulating CDKN1A and provide evidence that miR-149-3p may be useful as a novel therapeutic target for pediatric ACT.


Assuntos
Neoplasias do Córtex Suprarrenal , MicroRNAs , Neoplasias do Córtex Suprarrenal/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Criança , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , RNA Mensageiro
2.
Pediatr Blood Cancer ; 69(7): e29553, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34971073

RESUMO

Pediatric adrenocortical tumors (ACT) are rare aggressive neoplasms with heterogeneous prognosis. Despite extensive efforts, identifying reliable prognostic factors for pediatric patients with ACT remains a challenge. MicroRNA (miRNA) signatures have been associated with cancer diagnosis, treatment response, and prognosis of several types of cancer. However, the role of miRNAs has been poorly explored in pediatric ACT. In this study, we performed miRNA microarray profiling on a cohort of 37 pediatric ACT and nine nonneoplastic adrenal (NNA) samples and evaluated the prognostic significance of abnormally expressed miRNAs using Kaplan-Meier plots, log-rank test, and Cox regression analysis. We identified a total of 98 abnormally expressed miRNAs; their expression profile discriminated ACT from NNAs. Among the 98 deregulated miRNAs, 17 presented significant associations with patients' survival. In addition, higher expression levels of hsa-miR-630, -139-3p, -125a-3p, -574-5p, -596, -564, -1321, and -423-5p and lower expression levels of hsa-miR-377-3p, -126-3p, -410, -136-3p, -29b-3p, -29a-3p, -337-5p, -143-3p, and 140-5p were significantly associated with poor prognosis, tumor relapse, and/or death. Importantly, the expression profile of these 17 miRNAs stratified patients into two groups of ACTs with different clinical outcomes. Although some individual miRNAs exhibit potential prognostic values in ACTs, only the 17 miRNA-based expression clustering was considered an independent prognostic factor for 5-year event-free survival (EFS) compared to other clinicopathological features. In conclusion, our study reports for the first time associations between miRNA profiles and childhood ACT prognosis, providing evidence that miRNAs could be useful biomarkers to discriminate patients with favorable and unfavorable clinical outcomes.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Criança , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico
3.
J Mol Med (Berl) ; 99(8): 1101-1113, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33903940

RESUMO

Although ependymoma (EPN) molecular subgroups have been well established by integrated high-throughput platforms, low- and middle-income countries still need low-cost techniques to promptly classify these molecular subtypes. Here, we applied low-cost methods to classify EPNs from a Brazilian cohort with 60 pediatric EPN patients. Fusion transcripts (C11orf95-RELA, YAP1-MAMLD1, and YAP1-FAM118B) were investigated in supratentorial EPN (ST-EPNs) samples through RT-PCR/Sanger sequencing and immunohistochemistry (IHC) for p65/L1CAM. qRT-PCR and IHC were used to evaluate expression profiling of CXorf67, LAMA2, NELL2, and H3K27me3 in posterior fossa EPN (PF-EPNs) samples. In silico analysis was performed using public microarray data to validate the molecular assignment PF-EPNs with LAMA2/NELL2 markers. RELA cases and YAP1-MAMLD1 fusions were identified in nine and four ST-EPNs, respectively. An additional RELA case was identified by IHC. Of note, LAMA2 and NELL2 gene expression and immunoprofiling were less accurate for classifying PF-EPNs, which were confirmed by in silico analysis. Yet, H3K27me3 staining was sufficient to classify PF-EPN subgroups. Our results emphasize the feasibility of a simplified strategy to molecularly classify EPNs in the vast majority of cases (49/60; 81.7%). A coordinated combination of simple methods can be effective to screen pediatric EPN with the available laboratory resources at most low-/mid-income countries, giving support for clinical practice in pediatric EPN. KEY MESSAGES: Low- and middle-income countries need effective low-cost approaches to promptly distinguish between EPN molecular subgroups. RT-PCR plus Sanger sequencing is able to recognize the most common types of RELA and YAP1 fusion transcripts in ST-EPNs. Genetic and protein expressions of LAMA2 and NELL2 are of limited value to accurately stratify PF-EPNs. Immunohistochemical staining for H3K27me3 may be used as a robust method to accurately diagnose PF-EPNs subgroups. A coordinated flow diagram based on these validated low-cost methods is proposed to help clinical-decision making and to reduce costs with NGS assessment outside research protocols.


Assuntos
Ependimoma/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Algoritmos , Biomarcadores Tumorais/genética , Brasil , Criança , Biologia Computacional/métodos , Gerenciamento Clínico , Suscetibilidade a Doenças , Ependimoma/etiologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Técnicas de Diagnóstico Molecular/economia , Técnicas de Diagnóstico Molecular/normas , Gradação de Tumores , Estadiamento de Neoplasias , Proteínas de Fusão Oncogênica/genética , Curva ROC , Reprodutibilidade dos Testes , Análise de Sequência de DNA
4.
Cancer Gene Ther ; 27(6): 509-512, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31308481

RESUMO

RELA-fused supratentorial (ST) ependymoma (EPN) is an aggressive subgroup with poor prognosis. Considering the putative role of Notch signaling in the maintenance of the cancer stem cells (CSC) phenotype in RELA-fused EPN, we investigated the expression of Notch pathway and its target genes in this subgroup. We also evaluated the effects of two Notch inhibitors (DAPT and RO4929097) on cell proliferation, apoptosis, colony formation, and CSCs markers gene expression on EPN cell line of the RELA-fused subgroup (BXD-1425). In addition, in silico signatures of the Notch genes and CSCs markers were analyzed on a large clinical dataset from GSE64415 study. We found that among the ST-EPN subgroups the Notch signaling (NOTCH1, JAG1, JAG2, and HES4) is specifically activated in the ST-EPN-RELA. Furthermore, treatment of the RELA-fused EPN cell line with the Notch inhibitors impaired the Notch signaling expression and revealed that Notch axis is not essential for cell proliferation and survival in this setting. NOTCH1 expression in ST-EPN was correlated with the CSCs markers VEGFA and L1CAM overexpression and JAG1 expression was correlated with the CCND1 and CDK6 overexpression. In addition, in vitro treatment with Notch inhibitors induced downregulation of CSCs markers. These findings indicate that Notch signaling can be involved in the ST-EPN-RELA CSCs maintenance by modulating the expression of genes responsible for cell phenotype and cell fate.


Assuntos
Ependimoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Neoplasias Supratentoriais/metabolismo , Fator de Transcrição RelA/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ependimoma/patologia , Humanos , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Neoplasias Supratentoriais/patologia , Regulação para Cima
5.
Comp Cytogenet ; 11(1): 65-79, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919950

RESUMO

The Tc1 mariner element is widely distributed among organisms and have been already described in different species of fish. The genus Ancistrus (Kner, 1854) has 68 nominal species and is part of an interesting taxonomic and cytogenetic group, as well as presenting a variation of chromosome number, ranging from 2n=34 to 54 chromosomes, and the existence of simple and multiple sex chromosome system and the occurrence of chromosomal polymorphisms involving chromosomes that carry the nucleolus organizer region. In this study, a repetitive element by restriction enzyme, from Ancistrus sp.1 "Flecha" was isolated, which showed similarity with a transposable element Tc1-mariner. Its chromosomal location is distributed in heterochromatic regions and along the chromosomal arms of all specimens covered in this study, confirming the pattern dispersed of this element found in other studies carried out with other species. Thus, this result reinforces the hypothesis that the sequence AnDraI is really a dispersed element isolated. As this isolated sequence showed the same pattern in all species which have different sex chromosomes systems, including in all sex chromosomes, we could know that it is not involved in sex chromosome differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...