Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(2): 311-318, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36216976

RESUMO

Candida albicans is responsible for most of the nosocomial infections that affect immunocompromised individuals. We investigated the application of eosin in photodynamic inactivation as a strategy in the inhibition of the growth of C. albicans and the morphological variation and growth dynamics in light of fractal theory. The damage caused to fungal structures alters the roughness of the colony, and these changes were described by parameters that were defined by mathematical models. Proliferation of the fungi should be inhibited in the center of the colonies and the analysis of the edges gives an indication about the dynamics of growth and cell reproduction.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fármacos Fotossensibilizantes/química , Fractais , Candida albicans , Modelos Teóricos
2.
Biomater Biosyst ; 7: 100060, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36824490

RESUMO

We describe the preparation of a membrane composed of polypyrrole-polystyrene (PPy-PS) and its application in DNA extraction. We adopted the electrospinning technique to prepare polystyrene (PS) membranes, which we used as substrates for incorporating polypyrrole chains through an in situ chemical procedure. As a model system, we initially investigated the use of PPy-PS membranes for the extraction of salmon sperm DNA from aqueous solutions. These studies have shown that the PPy-PS membrane has a maximum adsorption capacity of 236.0 mg of DNA per gram of PPy after 30 min of exposure to a DNA solution (100 mg/L). We incorporated the PPy-PS membranes into centrifugation columns, which we used to carry out experiments for extracting and purification of DNA from curly lettuce leaves. The protocol was initially optimized by first examining the most appropriate concentration of the three components of the lysis buffer (Tris/HCl, NaCl, and EDTA-Na). We then investigated the most adequate volumes of the concentrated surfactant solution (SDS 20%) and that used in the protein and polysaccharide precipitation step (5 M potassium acetate, pH 6.3), factors that directly influence the quality and quantity of the fraction of DNA obtained. For curly lettuce leaves, both in their mature and young stages, the yield and purity of the DNA purified using the PPy-PS membrane were comparable to those obtained using a commercial kit. In both cases, the collected DNA samples presented excellent integrity and quality. These results are suggestive that these composite membranes are competitive with the commercial kits available for the extraction and purification of DNA from plants.

3.
Colloids Surf B Biointerfaces ; 208: 112120, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34597940

RESUMO

In 2016, the Zika virus (ZIKV) infection became a major public health problem, after the discovery that an alarming increase in the number of Brazilian newborns with microcephaly could be associated with the occurrence of this viral disease during the pregnancy of their mothers. The urgent need for simple diagnostic methods that allow rapid screening of suspected cases has stimulated the search for low-cost devices capable of detecting specific sequences of nucleic acids. The present work describes the development of nanostructured films formed by bilayers of conjugated polymers for rapid detection of the presence of Zika virus DNA, via fluorescence methods. For this, we initially deposited alternating layers of polyaniline (PANI) and polypyrrole (PPY) on the surface of polyethylene terephthalate (PET) sheets. The films obtained were then characterized by SEM, UV-Vis, ATR-FTIR, and contact angle measurements. For their use as quenchers for the diagnosis of Zika, a single DNA strand-specific for ZIKV was labeled with a fluorophore (FAM-ssDNA). We determined the time required for the saturation of the interaction between probe FAM-ssDNA and the film (180 min) and the time for the maximal hybridization between FAM-ssDNA and target DNA to occur (60 min). The detection limits were estimated as 345 pM and 278 pM for the PET/PPY-PANI and PET/PANI-PPY hybrid films, respectively. The simplicity of the procedure, coupled with the fact that a positive/negative response can be obtained in less than 60 min, suggests that the proposal of using these polymeric bilayer films is a promising methodology for the development of rapid molecular diagnostic tests.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Condutividade Elétrica , Feminino , Humanos , Recém-Nascido , Polímeros , Gravidez , Complicações Infecciosas na Gravidez/virologia , Pirróis , Zika virus/genética , Infecção por Zika virus/diagnóstico
4.
Anal Chim Acta ; 1178: 338762, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482873

RESUMO

We report the synthesis and characterization of a new hybrid magnetic composite formed by the enveloping of magnetic iron oxide nanoparticles (γ-NP) with chains of the conductive polymer PEDOT, and its use for the efficient separation of DNA molecules from complex biological samples, allowing the high yield separation of a pure and high-quality DNA fraction. The successful formation of the γ-NP/PEDOT composite was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, UV visible spectroscopy (UV-Vis), and magnetic hysteresis loop measurements. The nanocomposites showed an excellent capacity of DNA adsorption (Qe âˆ¼ 248 mg/g) in a model system consisting of salmon sperm DNA. When the γ-NP/PEDOT was used in protocols to extract the DNA from complex samples, the corresponding yield was in the range of 6.4 µg (blood) and 7.3 µg (bacteria), as evaluated quality by UV-Vis, PCR analysis, and electrophoresis assays. We also established that the captured DNA does not need to be detached from the nanocomposite for use as seeding material in PCR amplification experiments. These results and the simplicity of the protocols indicate that the γ-NP/PEDOT composite is a promising DNA absorbent, being competitive with the commercially available magnetic purification kits.


Assuntos
Nanocompostos , Compostos Bicíclicos Heterocíclicos com Pontes , DNA/genética , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Environ Sci (China) ; 100: 62-73, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279054

RESUMO

We report the preparation of poly(3,4-ethylene dioxythiophene) (PEDOT)-modified polyvinylidene fluoride electrospun fibers and their use as a novel adsorbent material for the removal of the anionic dye Methyl Orange (MO) from aqueous media. This novel adsorbent material can be used to selectively remove MO on a wide pH range (3.0-10.0), with a maximum capacity of 143.8 mg/g at pH 3.0. When used in a recirculating filtration system, the maximum absorption capacity was reached in a shorter time (20 min) than that observed for batch mode experiments (360 min). Based on the analyses of the kinetics and adsorption isotherm data, one can conclude that the predominant mechanism of interaction between the membrane and the dissolved dye molecules is electrostatic. Besides, considering the estimated values for the Gibbs energy, and entropy and enthalpy changes, it was established that the adsorption process is spontaneous and occurs in an endothermic manner. The good mechanical and environmental stability of these membranes allowed their use in at least 20 consecutive adsorption/desorption cycles, without significant loss of their characteristics. We suggest that the physical-chemical characteristics of PEDOT make these hybrid mats a promising adsorbent material for use in water remediation protocols and effluent treatment systems.


Assuntos
Poluentes Químicos da Água , Adsorção , Compostos Azo , Compostos Bicíclicos Heterocíclicos com Pontes , Concentração de Íons de Hidrogênio , Cinética , Polímeros , Polivinil , Termodinâmica
6.
Langmuir ; 36(11): 2920-2929, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32119558

RESUMO

Phosphate ions perform a variety of functions in metabolic processes and are essential for all living organisms. The determination of the concentration of phosphate ions is useful in clinical diagnosis of various diseases as an inadequate phosphate level could lead to many health problems. In the search for a cost-effective method of fast monitoring, we investigated the use of cobalt ferrite nanoparticles (CoFeNPs) in the selective recognition of phosphate ions dissolved in aqueous media and more complex samples, such as human blood serum. We prepared these NPs by a chemical coprecipitation route and subjected them to annealing at 600 °C for 1 h. The successful formation of the NPs was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and hysteresis loop measurements. The NPs exhibited a ferrimagnetic behavior, a spinel-type crystalline structure, and hexagonal shape in the nanoscale range. We demonstrated that CoFeNPs containing immobilized fluorescent-labeled single-chain DNA (ssDNA*) probes can be applied for the fast selective detection of phosphate ions dissolved in a liquid medium. We have explored the fact that phosphate groups can displace ssDNA* probes attached to the nanoparticles, therefore causing a perceptible change in the fluorescence signal of the supernatant liquid. This detection method has been tested for the sensing of phosphate ions present both in aqueous solutions and in biological samples, with excellent selectivity and a low limit of detection (∼1.75 nM).

7.
Anal Chim Acta ; 1047: 214-224, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30567653

RESUMO

When fluorophores attach to nanostructured films of intrinsically conducting polymers (ICPs), a quenching of their fluorescence may occur. We have exploited these characteristics for the development of polymeric films that can be used in a simple and efficient molecular diagnosis protocol based on the selective detection of nucleic acids. Our procedure rests on the fact that the fluorescence of 6-carboxyfluorescein-labeled single-stranded DNA (FAM-ssDNA) probes is quenched upon their immobilization on nanostructured ICP - polypyrrole (PPY) and polyaniline (PANI) - films deposited on polyethylene terephthalate (PET) substrates. Hybridization occurs whenever a sample with the complementary sequence is brought in contact with the immobilized probe, with the newly formed ds-DNA chains detaching from the flexible polymeric film and causing the restoration of the fluorescence. This sensing system exhibits a low background signal that depends on both the thickness and hydrophobicity of the films. As a model system, we used a FAM-ssDNA probe specific for the Leishmania infantum parasite. The results confirm this procedure as a simple, fast and highly sensitive scheme for the recognition of the target DNA, with a detection limit of the 1.1 nM and 1.3 nM for the PPY/PET and PANI/PET films, respectively. In addition, this biosensor has excellent stability and exhibits a good and reproducible performance even when used for the direct detection of ssDNA in relatively complex biological samples.


Assuntos
Compostos de Anilina/química , Técnicas Biossensoriais/métodos , Sondas de DNA/química , DNA/análise , DNA/química , Polímeros/química , Pirróis/química , DNA/genética , Sondas de DNA/genética , Condutividade Elétrica , Fluoresceínas/química , Fluorescência , Corantes Fluorescentes/química , Leishmania infantum/genética , Limite de Detecção , Hibridização de Ácido Nucleico , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos
8.
J Photochem Photobiol B ; 173: 514-521, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28683399

RESUMO

Candida albicans is responsible for many of the infections affecting immunocompromised individuals. Although most C. albicans are susceptible to antifungal drugs, uncontrolled use of these drugs has promoted the development of resistance to current antifungals. The clinical implication of resistant strains has led to the search for safer and more effective drugs as well as alternative approaches, such as controlled drug release using liposomes and photodynamic inactivation (PDI), to eliminate pathogens by combining light and photosensitizers. In this study, we used layer-by-layer (LBL) assembly to immobilize triclosan and acridine orange encapsulated in liposomes and investigated the possibility of controlled release using light. Experiments were carried out to examine the susceptibility of C. albicans to PDI. The effects of laser irradiation were investigated by fluorescence microscopy, atomic force microscopy, and release kinetics. Liposomes were successfully prepared and immobilized using the self-assembly LBL technique. Triclosan was released more quickly when the LBL film was irradiated. The release rate was approximately 40% higher in irradiated films (fluence of 15J/cm2) than in non-irradiated films. The results of the susceptibility experiments and surface morphological analysis indicated that C. albicans cell death is caused by photodynamic inactivation. Liposomes containing triclosan and acridine orange may be useful for inactivating C. albicans using light. Our results lay the foundation for the development of new clinical strategies to control resistant strains.


Assuntos
Laranja de Acridina/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Lipossomos/química , Fármacos Fotossensibilizantes/química , Triclosan/química , Laranja de Acridina/metabolismo , Laranja de Acridina/farmacologia , Antifúngicos/química , Candida albicans/efeitos da radiação , Liberação Controlada de Fármacos/efeitos da radiação , Lasers , Lipossomos/metabolismo , Microscopia de Força Atômica , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Triclosan/metabolismo , Triclosan/farmacologia
9.
Photodiagnosis Photodyn Ther ; 15: 147-55, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27375091

RESUMO

The development of systems for the controlled release of drugs is important because they allow the control of drug absorption and tissue distribution and also can reduce local toxicity. This study aimed to assemble and characterize two types of release systems, consisting of layer-by-layer films obtained from poly(allylamine) hydrochloride with chlorophyll (PAH/CHL films) or chlorophyll incorporated into dipalmitoylphosphatidylcholine liposomes (PAH/Lip+CHL films). For these systems, the molecular aggregation, growth process, thermally stimulated desorption, wettability, and controlling release of CHL was studied by using UV-vis spectroscopy and wetting contact angle analysis. In addition, experiments of photodynamic inactivation using PAH/CHL or PAH/Lip+CHL films with a 633-nm laser light were performed and the susceptibility of Candida albicans (C. albicans) to this approach was examined. Fluorescence and atomic force microscopies were used to investigate the surface morphology after the application of the photoinactivation procedure. A redshift of the UV-vis spectrum associated to films when compared with the spectrum of the CHL solution indicated a molecular aggregation of CHL molecules in the films. The film growth process was determined by a nucleation and a growth of spheroids or rods for either PAH/Lip+CHL or PAH/CHL films, respectively. Thermally activated desorption experiments indicated that interactions between CHL and PAH (126kJ/mol) in PAH/CHL or between Lip+CHL and PAH (140kJ/mol) in PAH/Lip+CHL films may be governed by electrostatic interactions. The wettability of PAH/Lip+CHL films was larger than that for PAH/CHL films, which can be attributed to hydrophilic groups on the surface of the DPPC liposomes. Release experiments revealed that free CHL in PAH/CHL films was released more slowly than its partner incorporated into liposomes. After the photodynamic inactivation, results of survival fraction and fluorescence microscopy revealed that C. albicans presented similar susceptibility for the two kinds of films. AFM supported the fluorescence one suggesting that cell death of C. albicans may occur due to damages to its cell wall by C. albicans.


Assuntos
Candida albicans/efeitos dos fármacos , Clorofila/química , Preparações de Ação Retardada/síntese química , Lipossomos/síntese química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Candida albicans/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Composição de Medicamentos/métodos , Quimioterapia Combinada/métodos
10.
Photodiagnosis Photodyn Ther ; 15: 197-201, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27353716

RESUMO

BACKGROUND: A novel approach for photodynamic inactivation of Candida albicans is proposed. This method consists of realizing inactivation using ultraviolet light (254nm) combined with spraying layer-by-layer films of acridine orange. METHODS: To evaluate the effectiveness of the approach, the C. albicans were immobilized on quartz slices and covered with the spray layer-by-layer films. The fungi were analyzed using experiments to determine cell viability, as well as by fluorescence and atomic force microscopy. RESULTS: Viability analysis of C. albicans after photodynamic inactivation assisted by the films indicates cell death. The extent of cell death increases as the number of film layers increases. Fluorescence and atomic force microscopy analyses corroborated the cell death of C. albicans, which is posited to be due to damages to the fungi cell wall. CONCLUSIONS: Our approach has the potential to be used as an alternative for photodynamic inactivation of C. albicans. In addition, this method could be used in clinical procedures, such as for the decontamination of medical devices.


Assuntos
Laranja de Acridina/administração & dosagem , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Fotoquimioterapia/métodos , Impressão Tridimensional , Laranja de Acridina/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Composição de Medicamentos/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Raios Ultravioleta
11.
Biomed Res Int ; 2014: 872701, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24963490

RESUMO

Interactions between proteins and drugs, which can lead to formation of stable drug-protein complexes, have important implications on several processes related to human health. These interactions can affect, for instance, free concentration, biological activity, and metabolism of the drugs in the blood stream. Here, we report on the UV-Visible spectroscopic investigation on the interaction of bovine serum albumin (BSA) with chlorophyll (Chl) in aqueous solution under physiological conditions. Binding constants at different temperatures--obtained by using the Benesi-Hildebrand equation--were found to be of the same order of magnitude (~10(4)M(-1)) indicating low affinity of Chl with BSA. We have found a hyperchromism, which suggested an interaction between BSA and Chl occurring through conformational changes of BSA caused by exposition of tryptophan to solvent. Films from BSA and Chl obtained at different Chl concentrations showed fractal structures, which were characterized by fractal dimension calculated from microscopic image analysis.


Assuntos
Clorofila/química , Soroalbumina Bovina/química , Animais , Bovinos , Humanos , Espectrofotometria Ultravioleta/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...