Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Radiat Oncol ; 45: 100731, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38304241

RESUMO

Objective: To reduce liver and lung dose during right breast irradiation while maintaining optimal dose to the target volume. This dose reduction has the potential to decrease acute side effects and long-term toxicity. Materials and Methods: 16 patients treated with radiation therapy for localized carcinoma of the right breast were included retrospectively. For the planning CT, each patient was immobilised on an indexed board with the arms placed above the head. CT scans were acquired in free-breathing (FB) as well as with deep inspiration breath hold (DIBH). Both scans were acquired with the same length. Planning target volumes (PTV's) were created with a 5 mm margin from the respective clinical target volumes (CTV's) on both CT datasets. The liver was outlined as scanned. Dose metrics evaluated were as follows: differences in PTV coverage, dose to the liver (max, mean, V90%, V50%, V30%), dose to lung (mean, V20Gy, relative electron density) and dose to heart (Dmax). The p-values were calculated using Wilcoxon signed-rank tests. A p-value was significant when <0.05. Results: Differences in PTV coverage between plans using FB and DIBH were less than 2 %. Maximum liver dose was significantly less using DIBH: 17.5 Gy versus FB: 40.3 Gy (p < 0.001). The volume of the liver receiving 10 % of the dose was significantly less using DIBH with 1.88 cm3 versus 72.2 cm3 under FB (p < 0.001). The absolute volume receiving 20 Gy in the right lung was larger using DIBH: 291 cm3 versus 230 cm3 under FB (p < 0.001) and the relative volume of lung receiving dose greater than 20 Gy was smaller with DIBH: 11.5 % versus 14 % in FB (p = 0.007). The relative electron density of lung was significantly less with DIBH: 0.59 versus 0.62 with FB, (p < 0.001). This suggests that the lung receives less dose due to its lower density when using DIBH. Conclusion: Radiation of the right breast using DIBH spares liver and lung tissue significantly and thus carries the potential of best practice for right sided breast cancer.

2.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628554

RESUMO

Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics.


Assuntos
Fígado , Preservação de Órgãos , Aldeído-Desidrogenase Mitocondrial , Humanos , Fígado/fisiologia , Transplante de Fígado , Preservação de Órgãos/métodos , Oxigênio , Perfusão/métodos , Succinatos , Transplantes
3.
Cells ; 11(4)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203337

RESUMO

Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.


Assuntos
Hepatopatias , Traumatismo por Reperfusão , Animais , Modelos Animais de Doenças , Isquemia , Mitocôndrias , Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...