Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microb Ecol ; 82(1): 100-103, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32200418

RESUMO

Terrestrial plants establish symbiosis with arbuscular mycorrhizal fungi (AMF) to exchange water and nutrients. However, the extent to which soil biodiversity influences such association remains still unclear. Here, we manipulated the soil microbial diversity using a "dilution-to-extinction" approach in a controlled pot microcosm system and quantified the root length colonization of maize plants by the AMF Rhizophagus clarus. The experiment was performed by manipulating the soil microbiome within a native and foreign soil having distinct physicochemical properties. Overall, our data revealed significant positive correlations between the soil microbial diversity and AMF colonization. Most importantly, this finding opposes the diversity-invasibility hypothesis and highlights for a potential overall helper effect of the soil biodiversity on plant-AMF symbiosis.


Assuntos
Micorrizas , Fungos/genética , Raízes de Plantas , Solo , Microbiologia do Solo
2.
Int J Genomics ; 2018: 7403670, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30363992

RESUMO

Sweet sorghum (Sorghum bicolor) is a multipurpose crop used as a feedstock to produce bioethanol, sugar, energy, and animal feed. However, it requires high levels of N fertilizer application to achieve the optimal growth, which causes environmental degradation. Bacterial endophytes, which live inside plant tissues, play a key role in the health and productivity of their host. This particular community may be influenced by different agronomical practices. The aim of the work was to evaluate the effects of N fertilization on the structure, diversity, abundance, and composition of endophytic and diazotrophic bacterial community associated with field-grown sweet sorghum. PCR-DGGE, quantitative PCR, and high-throughput sequencing were performed based on the amplification of rrs and nifH genes. The level of N fertilization affected the structure and abundance but not the diversity of the endophytic bacterial communities associated with sweet sorghum plants. This effect was pronounced in the roots of both bacterial communities analyzed and may depend on the physiological state of the plants. Specific bacterial classes and genera increased or decreased when the fertilizer was applied. The data obtained here contribute to a better understanding on the effects of agronomical practices on the microbiota associated with this important crop, with the aim to improve its sustainability.

3.
Springerplus ; 5(1): 828, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386277

RESUMO

Eight strains isolated from the stems of Lippia sidoides were identified as belonging to Lactococcus lactis, a bacterial species considered as "generally recognized as safe". Their capacity to solubilize/mineralize phosphate was tested in vitro with different inorganic and organic phosphorus (P) sources. All strains were able to solubilize calcium phosphate as an inorganic P source, and the best result was observed with strain 003.41 which solubilized 31 % of this P source. Rock phosphate, a mined rock containing high amounts of phosphate bearing minerals, was solubilized by five strains. When calcium phytate was the organic P source used, the majority of the strains tested showed phosphate mineralization activity. Moreover, all strains were able to solubilize/mineralize phosphate from poultry litter, a complex P source containing inorganic and predominantly organic P. The presence of genes coding for phytase and alkaline phosphatase was searched within the strains studied. However, only gene sequences related to alkaline phosphatase (phoA and phoD) could be detected in the majority of the strains (excepting strain 006.29) with identities varying from 67 to 88 %. These results demonstrate for the first time the potential of L. lactis strains for phosphate solubilization/mineralization activity using a broad spectrum of P sources; therefore, they are of great importance for the future development of more safe bioinoculants with possible beneficial effects for agriculture.

4.
BMC Microbiol ; 13: 29, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23387945

RESUMO

BACKGROUND: Lippia sidoides Cham., also known as pepper-rosmarin, produces an essential oil in its leaves that is currently used by the pharmaceutical, perfumery and cosmetic industries for its antimicrobial and aromatic properties. Because of the antimicrobial compounds (mainly thymol and carvacrol) found in the essential oil, we believe that the endophytic microorganisms found in L. sidoides are selected to live in different parts of the plant. RESULTS: In this study, the endophytic microbial communities from the stems and leaves of four L. sidoides genotypes were determined using cultivation-dependent and cultivation-independent approaches. In total, 145 endophytic bacterial strains were isolated and further grouped using either ERIC-PCR or BOX-PCR, resulting in 76 groups composed of different genera predominantly belonging to the Gammaproteobacteria. The endophytic microbial diversity was also analyzed by PCR-DGGE using 16S rRNA-based universal and group-specific primers for total bacteria, Alphaproteobacteria, Betaproteobacteria and Actinobacteria and 18S rRNA-based primers for fungi. PCR-DGGE profile analysis and principal component analysis showed that the total bacteria, Alphaproteobacteria, Betaproteobacteria and fungi were influenced not only by the location within the plant (leaf vs. stem) but also by the presence of the main components of the L. sidoides essential oil (thymol and/or carvacrol) in the leaves. However, the same could not be observed within the Actinobacteria. CONCLUSION: The data presented here are the first step to begin shedding light on the impact of the essential oil in the endophytic microorganisms in pepper-rosmarin.


Assuntos
Antibacterianos/farmacologia , Bactérias/classificação , Biota , Endófitos/classificação , Lippia/química , Lippia/microbiologia , Óleos Voláteis/farmacologia , Antibacterianos/análise , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Endófitos/efeitos dos fármacos , Endófitos/genética , Endófitos/isolamento & purificação , Dados de Sequência Molecular , Óleos Voláteis/análise , Filogenia , Folhas de Planta/química , Folhas de Planta/microbiologia , Caules de Planta/química , Caules de Planta/microbiologia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...