RESUMO
The aim of this study was to develop a material capable of rapidly absorbing bodily fluids and forming a resilient, adhesive, viscoelastic hydrogel in situ to prevent post-surgical adhesions. This material was formulated using O-carboxymethyl chitosan (O-CMCS), oxidized hyaluronic acid (OHA), and a crosslinking pigment derived from genipin and glutamic acid (G/GluP). Both crosslinked (O-CMCS/OHA-G/GluP) and non-crosslinked hydrogels (O-CMCS/OHA) were evaluated using a HAAKE™ MARS™ rheometer for their potential as post-surgical barriers. A rheological analysis, including dynamic oscillatory measurements, revealed that the crosslinked hydrogels exhibited significantly higher elastic moduli (G'), indicating superior gel formation and mechanical stability compared to non-crosslinked hydrogels. The G/GluP crosslinker enhanced gel stability by increasing the separation between G' and Gâ³ and achieving a lower loss tangent (tan δ < 1.0), indicating robustness under dynamic physiological conditions. The rapid hydration and gelation properties of the hydrogels underscore their effectiveness as physical barriers. Furthermore, the O-CMCS/OHA-G/GluP hydrogel demonstrated rapid self-healing and efficient application via spraying or spreading, with tissue adherence and viscoelasticity to facilitate movement between tissues and organs, effectively preventing adhesions. Additionally, the hydrogel proved to be both cost effective and scalable, highlighting its potential for clinical applications aimed at preventing post-surgical adhesions.
RESUMO
The objective of this study was to develop a chitosan-based biomaterial with calcium hydroxide and 2% chlorhexidine for intracanal treatment application and, consequently, to diminish the number of microorganisms in the root canal system. The chitosan solution was prepared by dissolving it in 2% and 4% acetic acid (v/v) for 1 h at room temperature (25 °C) with magnetic agitation (430 rpm). Calcium hydroxide was obtained in two stages: the first was the synthesis of the calcium oxide-CaO, and the second was that of the calcium hydroxide-Ca(OH)2. The samples were developed using different concentrations of chitosan, calcium hydroxide, and chlorhexidine 2%. They were codified as Ca(OH)2 + Q2% (M1), Ca(OH)2 + Q4% (M2), Ca(OH)2 + Q2% + CLX (M3), Ca(OH)2 + Q4% + CLX (M4), Ca(OH)2 + Q2% + PEG (M5), and Ca(OH)2 + Q4% + PEG (M6). They were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and rheological measurement, and the antimicrobial activity was evaluated in vitro. Characteristic absorption bands of the source materials used in this research were observed in the FTIR spectra. The X-ray diffraction technique indicated that the material has a semi-crystalline structure and that the presence of calcium hydroxide made the biomaterial more crystalline. The viscosity measurement showed a pseudoplastic behavior of the studied samples. The microbiologic analysis was positive for all samples tested, with bigger inhibition zones for the samples M3 and M4. As a result, we conclude that the formulation developed based on chitosan is promising and has potential to be an intracanal medication.