Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(12): 100676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940003

RESUMO

Extracellular vesicles (EVs) are biomolecule carriers for intercellular communication in health and disease. Nef is a HIV virulence factor that is released from cells within EVs and is present in plasma EVs of HIV-1 infected individuals. We performed a quantitative proteomic analysis to fully characterize the Nef-induced changes in protein composition of T cell-derived EVs and identify novel host targets of HIV. Several proteins with well-described roles in infection or not previously associated with HIV pathogenesis were specifically modulated by Nef in EVs. Among the downregulated proteins are the interferon-induced transmembrane 1, 2, and 3 (IFITM1-3) proteins, broad-spectrum antiviral factors known to be cell-to-cell transferable by EVs. We demonstrate that Nef depletes IFITM1-3 from EVs by excluding these proteins from the plasma membrane and lipid rafts, which are sites of EVs biogenesis in T cells. Our data establish Nef as a modulator of EVs' global protein content and as an HIV factor that antagonizes IFITMs.


Assuntos
Vesículas Extracelulares , Infecções por HIV , HIV-1 , Humanos , Linfócitos T , Proteoma/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Interferons/metabolismo , Infecções por HIV/metabolismo , Antivirais/metabolismo
2.
J Biol Chem ; 298(8): 102172, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753347

RESUMO

One of the hallmarks of Alzheimer's disease is the accumulation of toxic amyloid-ß (Aß) peptides in extracellular plaques. The direct precursor of Aß is the carboxyl-terminal fragment ß (or C99) of the amyloid precursor protein (APP). C99 is detected at elevated levels in Alzheimer's disease brains, and its intracellular accumulation has been linked to early neurotoxicity independently of Aß. Despite this, the causes of increased C99 levels are poorly understood. Here, we demonstrate that APP interacts with the clathrin vesicle adaptor AP-1 (adaptor protein 1), and we map the interaction sites on both proteins. Using quantitative kinetic trafficking assays, established cell lines and primary neurons, we also show that this interaction is required for the transport of APP from the trans-Golgi network to endosomes. In addition, disrupting AP-1-mediated transport of APP alters APP processing and degradation, ultimately leading to increased C99 production and Aß release. Our results indicate that AP-1 regulates the subcellular distribution of APP, altering its processing into neurotoxic fragments.


Assuntos
Doença de Alzheimer , Amiloidose , Complexo de Golgi , Síndromes Neurotóxicas , Proteínas Adaptadoras de Transporte Vesicular , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Complexo de Golgi/metabolismo , Humanos , Fator de Transcrição AP-1/genética
3.
PLoS Pathog ; 14(5): e1007047, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29723305

RESUMO

Peribunyaviridae is a large family of RNA viruses with several members that cause mild to severe diseases in humans and livestock. Despite their importance in public heath very little is known about the host cell factors hijacked by these viruses to support assembly and cell egress. Here we show that assembly of Oropouche virus, a member of the genus Orthobunyavirus that causes a frequent arboviral infection in South America countries, involves budding of virus particles toward the lumen of Golgi cisternae. As viral replication progresses, these Golgi subcompartments become enlarged and physically separated from Golgi stacks, forming Oropouche viral factory (Vfs) units. At the ultrastructural level, these virally modified Golgi cisternae acquire an MVB appearance, and while they lack typical early and late endosome markers, they become enriched in endosomal complex required for transport (ESCRT) proteins that are involved in MVB biogenesis. Further microscopy and viral replication analysis showed that functional ESCRT machinery is required for efficient Vf morphogenesis and production of infectious OROV particles. Taken together, our results indicate that OROV attracts ESCRT machinery components to Golgi cisternae to mediate membrane remodeling events required for viral assembly and budding at these compartments. This represents an unprecedented mechanism of how viruses hijack host cell components for coordinated morphogenesis.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Orthobunyavirus/metabolismo , Orthobunyavirus/fisiologia , Técnicas de Cultura de Células , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Células HeLa , Humanos , Orthobunyavirus/crescimento & desenvolvimento , Orthobunyavirus/patogenicidade , Vírion/metabolismo , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia
4.
J Cell Sci ; 130(2): 429-443, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27909244

RESUMO

The HIV accessory protein Nef is a major determinant of viral pathogenesis that facilitates viral particle release, prevents viral antigen presentation and increases infectivity of new virus particles. These functions of Nef involve its ability to remove specific host proteins from the surface of infected cells, including the CD4 receptor. Nef binds to the adaptor protein 2 (AP-2) and CD4 in clathrin-coated pits, forcing CD4 internalization and its subsequent targeting to lysosomes. Herein, we report that this lysosomal targeting requires a variant of AP-1 containing isoform 2 of γ-adaptin (AP1G2, hereafter γ2). Depletion of the γ2 or µ1A (AP1M1) subunits of AP-1, but not of γ1 (AP1G1), precludes Nef-mediated lysosomal degradation of CD4. In γ2-depleted cells, CD4 internalized by Nef accumulates in early endosomes and this alleviates CD4 removal from the cell surface. Depletion of γ2 also hinders EGFR-EGF-complex targeting to lysosomes, an effect that is not observed upon γ1 depletion. Taken together, our data provide evidence that the presence of γ1 or γ2 subunits delineates two distinct variants of AP-1 complexes, with different functions in protein sorting.


Assuntos
Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Antígenos CD4/metabolismo , Regulação para Baixo , HIV-1/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Transporte Proteico , Proteólise , Técnicas do Sistema de Duplo-Híbrido
5.
PLoS One ; 9(11): e113691, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25423108

RESUMO

Nef is an HIV-1 accessory protein that promotes viral replication and pathogenesis. A key function of Nef is to ensure sustained depletion of CD4 and MHC-I molecules in infected cells by inducing targeting of these proteins to multivesicular bodies (MVBs), and ultimately to lysosomes for degradation. Nef also affects cellular secretory routes promoting its own secretion via exosomes. To better understand the effects of Nef on the exocytic pathway, we investigated whether this viral factor modifies the composition of exosomes released by T lymphocytes. We showed that both CD4 and MHC-I molecules are secreted in exosomes from T cells and that the expression of Nef reduces the amount of these proteins in exosomes. To investigate the functional role for this novel activity of Nef, we performed in vitro HIV-1 infection assays in the presence of distinct populations of exosomes. We demonstrated that exosomes released by CD4+ T cells, but not CD4- T cells, efficiently inhibit HIV-1 infection in vitro. Because CD4 is the main receptor for HIV-1 infection, these results suggest that CD4 molecules displayed on the surface of exosomes can bind to envelope proteins of HIV-1 hindering virus interaction with target cells and infection. Importantly, CD4-depleted exosomes released by CD4+ T cells expressing Nef have a reduced capacity to inhibit HIV-1 infection in vitro. These results provide evidence that Nef promotes HIV-1 infection by reducing the expression of CD4 in exosomes from infected cells, besides the original role of Nef in reducing the CD4 levels at the cell surface.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Exossomos/imunologia , Produtos do Gene nef/imunologia , Infecções por HIV/imunologia , Linhagem Celular , Regulação para Baixo , Células HEK293 , HIV-1 , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Microscopia de Fluorescência
6.
J Biol Chem ; 289(40): 27744-56, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25118280

RESUMO

Nef is an accessory protein of human immunodeficiency viruses that promotes viral replication and progression to AIDS through interference with various host trafficking and signaling pathways. A key function of Nef is the down-regulation of the coreceptor CD4 from the surface of the host cells. Nef-induced CD4 down-regulation involves at least two independent steps as follows: acceleration of CD4 endocytosis by a clathrin/AP-2-dependent pathway and targeting of internalized CD4 to multivesicular bodies (MVBs) for eventual degradation in lysosomes. In a previous work, we found that CD4 targeting to the MVB pathway was independent of CD4 ubiquitination. Here, we report that this targeting depends on a direct interaction of Nef with Alix/AIP1, a protein associated with the endosomal sorting complexes required for transport (ESCRT) machinery that assists with cargo recruitment and intraluminal vesicle formation in MVBs. We show that Nef interacts with both the Bro1 and V domains of Alix. Depletion of Alix or overexpression of the Alix V domain impairs lysosomal degradation of CD4 induced by Nef. In contrast, the V domain overexpression does not prevent cell surface removal of CD4 by Nef or protein targeting to the canonical ubiquitination-dependent MVB pathway. We also show that the Nef-Alix interaction occurs in late endosomes that are enriched in internalized CD4. Together, our results indicate that Alix functions as an adaptor for the ESCRT-dependent, ubiquitin-independent targeting of CD4 to the MVB pathway induced by Nef.


Assuntos
Antígenos CD4/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Lisossomos/enzimologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Antígenos CD4/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/genética , Endossomos/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Lisossomos/genética , Ligação Proteica , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...