Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. j. med. biol. res ; 51(1): e5427, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889002

RESUMO

Protocols that mimic resistance exercise training (RET) in rodents present several limitations, one of them being the electrical stimulus, which is beyond the physiological context observed in humans. Recently, our group developed a conditioning system device that does not use electric shock to stimulate rats, but includes fasting periods before each RET session. The current study was designed to test whether cumulative fasting periods have some influence on skeletal muscle mass and function. Three sets of male Wistar rats were used in the current study. The first set of rats was submitted to a RET protocol without food restriction. However, rats were not able to perform exercise properly. The second and third sets were then randomly assigned into three experimental groups: 1) untrained control rats, 2) untrained rats submitted to fasting periods, and 3) rats submitted to RET including fasting periods before each RET session. While the second set of rats performed a short RET protocol (i.e., an adaptation protocol for 3 weeks), the third set of rats performed a longer RET protocol including overload (i.e., 8 weeks). After the short-term protocol, cumulative fasting periods promoted loss of weight (P<0.001). After the longer RET protocol, no difference was observed for body mass, extensor digitorum longus (EDL) morphology or skeletal muscle function (P>0.05 for all). Despite no effects on EDL mass, soleus muscle displayed significant atrophy in the fasting experimental groups (P<0.01). Altogether, these data indicate that fasting is a major limitation for RET in rats.


Assuntos
Animais , Masculino , Condicionamento Físico Animal/fisiologia , Jejum/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Valores de Referência , Fatores de Tempo , Peso Corporal/fisiologia , Adaptação Fisiológica , Distribuição Aleatória , Ingestão de Alimentos/fisiologia
2.
Braz J Med Biol Res ; 51(1): e5427, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29185588

RESUMO

Protocols that mimic resistance exercise training (RET) in rodents present several limitations, one of them being the electrical stimulus, which is beyond the physiological context observed in humans. Recently, our group developed a conditioning system device that does not use electric shock to stimulate rats, but includes fasting periods before each RET session. The current study was designed to test whether cumulative fasting periods have some influence on skeletal muscle mass and function. Three sets of male Wistar rats were used in the current study. The first set of rats was submitted to a RET protocol without food restriction. However, rats were not able to perform exercise properly. The second and third sets were then randomly assigned into three experimental groups: 1) untrained control rats, 2) untrained rats submitted to fasting periods, and 3) rats submitted to RET including fasting periods before each RET session. While the second set of rats performed a short RET protocol (i.e., an adaptation protocol for 3 weeks), the third set of rats performed a longer RET protocol including overload (i.e., 8 weeks). After the short-term protocol, cumulative fasting periods promoted loss of weight (P<0.001). After the longer RET protocol, no difference was observed for body mass, extensor digitorum longus (EDL) morphology or skeletal muscle function (P>0.05 for all). Despite no effects on EDL mass, soleus muscle displayed significant atrophy in the fasting experimental groups (P<0.01). Altogether, these data indicate that fasting is a major limitation for RET in rats.


Assuntos
Jejum/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Treinamento Resistido/métodos , Adaptação Fisiológica , Animais , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Masculino , Distribuição Aleatória , Ratos Wistar , Valores de Referência , Fatores de Tempo
3.
Amino Acids ; 48(8): 1993-2001, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26872655

RESUMO

Two experiments were performed, in which male Wistar Walker 256 tumor-bearing rats were inoculated with 4 × 10(7) tumor cells subcutaneously and received either creatine (300 mg/kg body weight/day; CR) or placebo (water; PL) supplementation via intragastric gavage. In experiment 1, 50 rats were given PL (n = 22) or CR (n = 22) and a non-supplemented, non-inoculated group served as control CT (n = 6), for 40 days, and the survival rate and tumor mass were assessed. In experiment 2, 25 rats were given CR or PL for 15 days and sacrificed for biochemical analysis. Again, a non-supplemented, non-inoculated group served as control (CT; n = 6). Tumor and muscle creatine kinase (CK) activity and total creatine content, acidosis, inflammatory cytokines, and antioxidant capacity were assessed. Tumor growth was significantly reduced by approximately 30 % in CR when compared with PL (p = 0.03), although the survival rate was not significantly different between CR and PL (p = 0.65). Tumor creatine content tended to be higher in CR than PL (p = 0.096). Tumor CK activity in the cytosolic fraction was higher in CR than PL (p < 0.0001). Blood pCO2 was higher in CT and CR than PL (p = 0.0007 and p = 0.004, respectively). HCO3 was augmented in CT compared to PL (p = 0.03) and CR (p = 0.001). Plasma IL-6 was lower and IL-10 level was higher in CR than PL (p = 0.03 and p = 0.0007, respectively) and TNF-alpha featured a tendency of decrease in CR compared to PL (p = 0.08). Additionally, total antioxidant capacity tended to be lower in CT than PL (p = 0.07). Creatine supplementation was able to slow tumor growth without affecting the overall survival rate, probably due to the re-establishment of the CK-creatine system in cancer cells, leading to attenuation in acidosis, inflammation, and oxidative stress. These findings support the role of creatine as a putative anti-cancer agent as well as help in expanding our knowledge on its potential mechanisms of action in malignancies.


Assuntos
Antineoplásicos/farmacologia , Creatina Quinase Forma MM/metabolismo , Creatina/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Creatina/farmacocinética , Masculino , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...