Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(23): 29296-320, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698415

RESUMO

Plasmonic transmission lines have great potential to serve as direct interconnects between nanoscale light spots. The guiding of gap plasmons in the slot between adjacent nanowire pairs provides improved propagation of surface plasmon polaritons while keeping strong light confinement. Yet propagation is fundamentally limited by losses in the metal. Here we show a workaround operation of the gap-plasmon transmission line, exploiting both gap and external modes present in the structure. Interference between these modes allows us to take advantage of the larger propagation distance of the external mode while preserving the high confinement of the gap mode, resulting in nanoscale confinement of the optical field over a longer distance. The performance of the gap-plasmon transmission line is probed experimentally by recording the propagation of quantum dots luminescence over distances of more than 4 µm. We observe a 35% increase in the effective propagation length of this multimode system compared to the theoretical limit for a pure gap mode. The applicability of this simple method to nanofabricated structures is theoretically confirmed and offers a realistic way to combine longer propagation distances with lateral plasmon confinement for far field nanoscale interconnects.

2.
Opt Express ; 20(13): 14663-82, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22714528

RESUMO

In this paper we discuss the fabrication and the electromagnetic (EM) characterization of anisotropic eutectic metamaterials, consisting of cylindrical polaritonic LiF rods embedded in either KCl or NaCl polaritonic host. The fabrication was performed using the eutectics directional solidification self-organization approach. For the EM characterization the specular reflectance at far infrared, between 3 THz and 11 THz, was measured and also calculated by numerically solving Maxwell equations, obtaining good agreement between experimental and calculated spectra. Applying an effective medium approach to describe the response of our samples, we predicted a range of frequencies in which most of our systems behave as homogeneous anisotropic media with a hyperbolic dispersion relation, opening thus possibilities for using them in negative refractive index and imaging applications at THz range.


Assuntos
Metais/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Luz , Espalhamento de Radiação , Radiação Terahertz
4.
J Chem Phys ; 120(18): 8815-23, 2004 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-15267813

RESUMO

The effect of molecular structure on the gamma relaxation dynamics has been studied in a set of aromatic poly(isophthalamide)s. This polymer family differ in the bridge group between phenylene rings [hexafluoroisopropylidene (C(CF(3))(2)) or ether] and also in the presence of t-butyl groups (C(CH(3))(3)) as pendant substituent on the five position of isophthalic ring. The results obtained from wide angle x-ray scattering in the glassy state indicated that both (C(CF(3))(2)) and (C(CH(3))(3)) groups favor the separation between chains, which is reflected on different interchain average distances. Dielectric experiments showed that both bulky groups favor the mobility in the glassy state. Molecular modelling methods were used to know the kind of molecular motions associated to the dielectric relaxation observed below the glass transition temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA