Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 223: 173523, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36731751

RESUMO

Approximately two-thirds of patients with major depressive disorder (MDD) fail to respond to conventional antidepressants, suggesting that additional mechanisms are involved in the MDD pathophysiology. In this scenario, the glutamatergic system represents a promising therapeutic target for treatment-resistant depression. To our knowledge, this is the first study using semantic approach with systems biology to identify potential targets involved in the fast-acting antidepressant effects of ketamine and its enantiomers as well as identifying specific targets of (R)-ketamine. We performed a systematic review, followed by a semantic analysis and functional gene enrichment to identify the main biological processes involved in the therapeutic effects of these agents. Protein-protein interaction networks were constructed, and the genes exclusively regulated by (R)-ketamine were explored. We found that the regulation of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) receptor and N-methyl-d-aspartate (NMDA) receptor subunits-Postsynaptic Protein 95 (PSD-95), Brain Derived Neurotrophic Factor (BDNF), and Tyrosine Receptor Kinase B (TrkB) are shared by the three-antidepressant agents, reinforcing the central role of the glutamatergic system and neurogenesis on its therapeutic effects. Differential regulation of Transforming Growth Factor Beta 1 (TGF-ß1) receptors-Mitogen-Activated Protein Kinases (MAPK's), Receptor Activator of Nuclear Factor-Kappa Beta Ligand (RANKL), and Serotonin Transporter (SERT) seems to be particularly involved in (R)-ketamine antidepressant effects. Our data helps further studies investigating the relationship between these targets and the mechanisms of (R)-ketamine and searching for other therapeutic compounds that share the regulation of these specific biomolecules. Ultimately, this study could contribute to improve the fast management of depressive-like symptoms with less detrimental side effects than ketamine and (S)-ketamine.


Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Ketamina/farmacologia , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Biologia de Sistemas , Antidepressivos/farmacologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Antonie Van Leeuwenhoek ; 115(8): 1009-1029, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35678932

RESUMO

The genomes of two Penicillium strains were sequenced and studied in this study: strain 2HH was isolated from the digestive tract of Anobium punctatum beetle larva in 1979 and the cellulase hypersecretory strain S1M29, derived from strain 2HH by a long-term mutagenesis process. With these data, the strains were reclassified and insight is obtained on molecular features related to cellulase hyperproduction and the albino phenotype of the mutant. Both strains were previously identified as Penicillium echinulatum and this investigation indicated that these should be reclassified. Phylogenetic and phenotype data showed that these strains represent a new Penicillium species in series Oxalica, for which the name Penicillium ucsense is proposed here. Six additional strains (SFC101850, SFCP10873, SFCP10886, SFCP10931, SFCP10932 and SFCP10933) collected from the marine environment in the Republic of Korea were also classified as this species, indicating a worldwide distribution of this new taxon. Compared to the closely related strain Penicillium oxalicum 114-2, the composition of cell wall-associated proteins of P. ucsense 2HH shows five fewer chitinases, considerable differences in the number of proteins related to ß-D-glucan metabolism. The genomic comparison of 2HH and S1M29 highlighted single amino-acid substitutions in two major proteins (BGL2 and FlbA) that can be associated with the hyperproduction of cellulases. The study of melanin pathways shows that the S1M29 albino phenotype resulted from a single amino-acid substitution in the enzyme ALB1, a precursor of the 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis. Our study provides important knowledge towards understanding species distribution, molecular mechanisms, melanin production and cell wall biosynthesis of this new Penicillium species.


Assuntos
Celulase , Penicillium , Celulase/genética , Genômica , Melaninas/metabolismo , Penicillium/genética , Filogenia
3.
Front Microbiol ; 11: 588263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193246

RESUMO

Penicillium echinulatum 2HH and Penicillium oxalicum 114-2 are well-known cellulase fungal producers. However, few studies addressing global mechanisms for gene regulation of these two important organisms are available so far. A recent finding that the 2HH wild-type is closely related to P. oxalicum leads to a combined study of these two species. Firstly, we provide a global gene regulatory network for P. echinulatum 2HH and P. oxalicum 114-2, based on TF-TG orthology relationships, considering three related species with well-known regulatory interactions combined with TFBSs prediction. The network was then analyzed in terms of topology, identifying TFs as hubs, and modules. Based on this approach, we explore numerous identified modules, such as the expression of cellulolytic and xylanolytic systems, where XlnR plays a key role in positive regulation of the xylanolytic system. It also regulates positively the cellulolytic system by acting indirectly through the cellodextrin induction system. This remarkable finding suggests that the XlnR-dependent cellulolytic and xylanolytic regulatory systems are probably conserved in both P. echinulatum and P. oxalicum. Finally, we explore the functional congruency on the genes clustered in terms of communities, where the genes related to cellular nitrogen, compound metabolic process and macromolecule metabolic process were the most abundant. Therefore, our approach allows us to confer a degree of accuracy regarding the existence of each inferred interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...