Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38944269

RESUMO

The daily variations of temperature are one of the main synchronizers of the circadian rhythms. In addition, water temperature influences the embryonic and larval development of fish and directly affects their metabolic processes. The application of thermocycles to fish larvae has been reported to improve growth and the maturation of the digestive system, but their effects on metabolism are poorly understood. The aim of the present study was to evaluate the effect of two different temperature regimes, cycling versus constant, on the daily rhythms of metabolic factors of Nile tilapia (Oreochromis niloticus) larvae. For this purpose, fertilized eggs were divided into two groups: one reared in a 31 °C:25 °C day:night thermocycle (TCY) and another group maintained in a constant 28 °C temperature (CTE). The photoperiod was set to a 12:12 h light/dark cycle. Samples were collected every 4 h during a 24-h cycle on days 4, 8 and 13 post fertilization (dpf). The expression levels of alanine aminotransferase (alt), aspartate aminotransferase (ast), malic enzyme, glucose-6-phosphate dehydrogenase (g6pd), phosphofructokinase (pfk) and pyruvate kinase (pk) were analyzed by qPCR. Results showed that, in 13 dpf animals, most of the genes analyzed (alt, ast, malic, g6pd and pfk) showed daily rhythms in TCY, but not in the group kept at constant temperature, with most acrophases detected during the feeding period. An increase in nutrient metabolism around feeding time can improve food utilization and thus increase larval performance. Therefore, the use of thermocycles is recommended for tilapia larviculture.

2.
J Therm Biol ; 115: 103596, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37327616

RESUMO

In nature, water temperature experiences daily variations known as thermocycles. Temperature is the main environmental factor that influences sex determination in most teleost fish. The purpose of this study was to examine the effects of rearing temperature (thermocycle (TC) vs. constant (CTE)) on development and a posterior thermal shock throughout the period of sex differentiation of Nile tilapia (Oreochromis niloticus). Embryos and larvae were kept under two temperature regimes: TC of 31 °C:25 °C day:night vs. CTE of 28 °C from 0 to 11 dpf. After this period, the larvae from each group were subjected to either heat treatment (HT, 36 °C for 12 days) or kept under the same rearing temperatures until 23 dpf (Control, C). Then all the groups remained at constant temperature until 270 dpf, when blood and gonads were collected. Larval samples were used to examine the expression of genes related to male (amh, ara, sox9a, dmrt1a) and female (cyp19a1a, foxl2, era) sexual differentiation. In juveniles, sex was characterized by histology, the gonadal expression of the genes involved in the sex steroid synthesis was analyzed by qPCR, and plasma testosterone (T) and estradiol (E2) levels were analyzed by ELISA. In larvae, daily TCs increased the survival rate against HT and up-regulated the expression of ovarian differentiation genes. In juveniles, TC + C induced a higher proportion of females and higher cyp19a1a expression compared to CTE + C. HT induced changes in the CTE group by up-regulating testicular differentiation genes and down-regulating female promoting genes, which did not occur in the TC group. Juveniles from TC + C group presented a higher proportion of females with higher E2 and cyp19a1a than CTE + HT. Fish from the CTE + HT group showed a higher percentage of males with highest T and amh. These findings indicate that daily TCs during larval development promote ovarian differentiation and diminish the masculinizing effects of HT.


Assuntos
Ciclídeos , Diferenciação Sexual , Animais , Masculino , Feminino , Diferenciação Sexual/genética , Ciclídeos/fisiologia , Temperatura , Gônadas , Ovário , Larva
3.
J Therm Biol ; 113: 103544, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055103

RESUMO

Ectothermic vertebrates, e.g. fish, maintain their body temperature within a specific physiological range mainly through behavioural thermoregulation. Here, we characterise the presence of daily rhythms of thermal preference in two phylogenetically distant and well-studied fish species: the zebrafish (Danio rerio), an experimental model, and the Nile tilapia (Oreochromis niloticus), an aquaculture species. We created a non-continuous temperature gradient using multichambered tanks according to the natural environmental range for each species. Each species was allowed to freely choose their preferred temperature during the 24h cycle over a long-term period. Both species displayed strikingly consistent temporal daily rhythms of thermal preference with higher temperatures being selected during the second half of the light phase and lower temperatures at the end of the dark phase, with mean acrophases at Zeitgeber Time (ZT) 5.37 h (zebrafish) and ZT 12.5 h (tilapia). Interestingly, when moved to the experimental tank, only tilapia displayed consistent preference for higher temperatures and took longer time to establish the thermal rhythms. Our findings highlight the importance of integrating both light-driven daily rhythm and thermal choice to refine our understanding of fish biology and improve the management and welfare of the diversity of fish species used in research and food production.


Assuntos
Ciclídeos , Tilápia , Animais , Peixe-Zebra , Ciclídeos/fisiologia , Temperatura , Ritmo Circadiano/fisiologia
4.
J Exp Zool A Ecol Integr Physiol ; 337(5): 501-515, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35189038

RESUMO

In the wild, the light/temperature environment cyclically oscillates insofar as the temperature rises after dawn and drops after dusk. In the underwater photo-environment, light is filtered through the water column so that blue photons reach greater depths. This paper investigates the combined effects of both factors with two temperature regimes (constant temperature = 26°C, CTE vs. daily thermocycle = 28°C day:24°C night, TC) and three light wavelengths (white-W, blue-B, red-R) on Danio rerio embryos and larvae from fertilization to 30 days post-fertilization (dpf). It studied hatching rate, larval survival, growth, and food intake (gut content). It analyzed the expression of the genes involved in stress (crh), somatic growth (gh, ifg1a, igf2a), and food intake control (npy, agrp, ghrelin, orexin, mch1, mch2, grp, cck8) at 10 and 30 dpf. The results revealed that the lowest hatching rate was in R regardless of the temperature regime. The highest growth rate was for the larvae reared with B + TC, which was consistent with the highest expression values of the growth factors. The highest feeding and expression levels of the genes involved in food intake were for the larvae in B (regardless of the temperature regime) and W + TC. Conversely, the R + CTE combination obtained the worst growth and feeding results. These findings indicate that the best larval performance can be achieved with combinations of blue wavelengths and cyclic temperature regimes that come closer to those in the natural environment. These results should be considered when optimizing rearing protocols to improve the growth and welfare of the fish larvae.


Assuntos
Luz , Peixe-Zebra , Animais , Larva , Temperatura
5.
J Therm Biol ; 97: 102880, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863444

RESUMO

In the wild, the environment does not remain constant, but periodically oscillates so that temperature rises in the daytime and drops at night, which generates a daily thermocycle. The effects of thermocycles on thermal tolerance have been previously described in fish. However, the impact of thermocycles on daytime-dependent thermal responses and daily rhythms of temperature tolerance and sensing expression mechanisms remain poorly understood. This study investigates the effects of two rearing conditions: constant (26 °C, C) versus a daily thermocycle (28 °C in the daytime; 24 °C at night, T) on the thermal tolerance response in zebrafish. Thermal tolerance (mortality) was assessed in 4dpf (days post fertilization) zebrafish larvae after acute heat shock (39 °C for 1 h) at two time points: middle of the light phase (ML) or middle of the dark phase (MD). Thermal stress responses were evaluated in adult zebrafish after a 37 °C challenge for 1 h at ML or MD to examine the expression of the heat-shock protein (HSP) (hsp70, hsp90ab1, grp94, hsp90aa1, hspb1, hsp47, cirbp) and transient receptor potential (TRP) channels (trpv4, trpm4a, trpm2, trpa1b) in the brain. Finally, the daily rhythms of gene expression of HSPs and TRPs were measured every 4 h for 24 h. The results revealed the larval mortality rates and the expression induction of most HSPs in adult zebrafish brain reached the highest values in fish reared under constant temperature and subjected to thermal shock at MD. The expression of most HSPs and TRPs was mainly synchronized to the light/dark (LD) cycle, regardless of the temperature regime. Most HSPs involved in hyperthermic challenges displayed diurnal rhythms with their acrophases in phase with warm-sensing thermoTRPs acrophases. The cold-sensing trpa1b peaked in the second half of the light period and slightly shifted toward the dark phase anticipating the acrophase of cirpb, which is involved in hypothermic challenges. These findings indicated that: a) thermal shocks are best tolerated in the daytime; b) the implementation of daily thermocycles during larval development reduces mortality and stress-cellular expression of HSPs to an acute thermal stress at MD; c) daily rhythms need to be considered when discussing physiological responses of thermal sensing and thermotolerance in zebrafish.


Assuntos
Resposta ao Choque Térmico/fisiologia , Temperatura , Sensação Térmica , Termotolerância , Peixe-Zebra/fisiologia , Animais , Encéfalo/metabolismo , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Larva/genética , Larva/fisiologia , Masculino , Canais de Potencial de Receptor Transitório/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...