Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 927: 148722, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914244

RESUMO

Products from stingless bees are rich reservoirs of microbial diversity, including yeasts with fermentative potential. Previously, two Saccharomyces cerevisiae strains, JP14 and IP9, were isolated from Jataí (Tetragonisca angustula) and Iraí (Nannotrigona testaceicornis) bees, respectively, aiming at mead production. Both strains presented great osmotic and sulfite tolerance, and ethanol production, although they have a high free amino nitrogen demand. Herein, their genomes were sequenced, assembled, and annotated, and the variants were compared to the S. cerevisiae S288c reference strain. The final assembly of IP9 and JP14 presented high N50 and BUSCO scores, and more than 6430 protein-coding genes. Additionally, nQuire predicted the ploidy of IP9 as diploid, but the results were not enough to determine the ploidy of JP14. The mitochondrial genomes of IP9 and JP14 presented the same gene content as S288c but the genes were rearranged and fragmented in different patterns. Meanwhile, the genes with mutations of high impact (e.g., indels, gain of stop codon) for both yeasts were enriched for transmembrane transport, electron transfer, oxidoreductase, heme binding, fructose, mannose, and glucose transport, activities related to the respiratory chain and sugar metabolism. The IP9 strain presented copy number gains in genes related to sugar transport and cell morphogenesis; in JP14, genes were enriched for disaccharide metabolism and transport, response to reactive oxygen species, and polyamine transport. On the other hand, IP9 presented copy number losses related to disaccharide, thiamine, and aldehyde metabolism, while JP14 presented depletions related to disaccharide, oligosaccharide, asparagine, and aspartate metabolism. Notably, both strains presented a killer toxin gene, annotated from the assembling of unmapped reads, representing a potential mechanism for the control of other microorganisms population in the environment. Therefore, the annotated genomes of JP14 and IP9 presented a high selective pressure for sugar and nitrogen metabolism and stress response, consistent with their isolation source and fermentative properties.

2.
Appl Microbiol Biotechnol ; 106(21): 6963-6976, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36197457

RESUMO

Papiliotrema laurentii, previously classified as Cryptococcus laurentii, is an oleaginous yeast that has been isolated from soil, plants, and agricultural and industrial residues. This variety of habitats reflects the diversity of carbon sources that it can metabolize, including monosaccharides, oligosaccharides, glycerol, organic acids, and oils. Compared to other oleaginous yeasts, such as Yarrowia lipolytica and Rhodotorula toruloides, there is little information regarding its genetic and physiological characteristics. From a biotechnological point of view, P. laurentii can produce surfactants, enzymes, and high concentrations of lipids, which can be used as feedstock for fatty acid-derived products. Moreover, it can be applied for the biocontrol of phytopathogenic fungi, contributing to quality maintenance in post- and pre-harvest fruits. It can also improve mycorrhizal colonization, nitrogen nutrition, and plant growth. P. laurentii is also capable of degrading polyester and diesel derivatives and acting in the bioremediation of heavy metals. In this review, we present the current knowledge about the basic and applied aspects of P. laurentii, underscoring its biotechnological potential and future perspectives. KEY POINTS: • The physiological characteristics of P. laurentii confer a wide range of biotechnological applications. • The regulation of the acetyl-CoA carboxylase in P. laurentii is different from most other oleaginous yeasts. • The GEM is a valuable tool to guide the construction of engineered P. laurentii strains with improved features for bio-based products.


Assuntos
Acetil-CoA Carboxilase , Yarrowia , Glicerol , Yarrowia/metabolismo , Ácidos Graxos/metabolismo , Nitrogênio , Carbono , Óleos , Solo , Monossacarídeos , Tensoativos , Poliésteres
3.
3 Biotech ; 10(9): 382, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32802724

RESUMO

In this work, we isolated and selected oleaginous yeasts from rock field soils from two National Parks in Brazil (Caparaó and Serra dos Órgãos) with the potential to accumulate oil from xylose, the main pentose sugar found in lignocellulosic biomass. From the 126 isolates, two were selected based on their lipid contents. They were taxonomically identified as Papiliotrema laurentii (UFV-1 and UFV-2). Of the two, P. laurentii UFV-1 was selected as the best lipid producer. Under unoptimized conditions, lipid production by P. laurentii UFV-1 was higher in glucose than in xylose. To improve its lipid production from xylose, we applied response surface methodology (RSM) with a face-centered central composite design (CCF). We evaluated the effects of agitation rate, initial cell biomass (OD600), carbon/nitrogen ratio (C/N ratio) and pH on lipid production. P. laurentii UFV-1 recorded the highest lipid content, 63.5% (w/w) of the cell dry mass, under the following conditions: C/N ratio = 100:1, pH value = 7.0, initial OD600 = 0.8 and agitation = 300 rpm. Under these optimized conditions, biomass, lipid titer and volumetric lipid productivity were 9.31 g/L, 5.90 g/L and 0.082 g/L.h, respectively. Additionally, we determined the fatty acid composition of P. laurentii UFV-1 as follows: C14:0 (0.5%), C16:0 (28.4-29.4%), C16:1 (0.2%), C18:0 (9.5-11%), C18:1 (58.6-60.5%), and C20:0 (0.7-0.8%). Based on this composition, the predicted properties of biodiesel showed that P. laurentii UFV-1 oil is suitable for use as feedstock in biodiesel production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...