Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Res Rev ; 39(4): 1372-1397, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30941786

RESUMO

An attractive approach to combat disease is to target theregulation of cell function. At the heart of this task are nuclear receptors (NRs); which control functions such as gene transcription. Arguably, the key player in this regulatory machinery is the retinoid X receptor (RXR). This NR associates with a third of the NRs found in humans. Scientists have hypothesized that controlling the activity of RXR is an attractive approach to control cellular functions that modulate diseases such as cancer, diabetes, Alzheimer's disease and Parkinson's disease. In this review, we will describe the key features of the RXR, present a historic perspective of the first RXR agonists, and discuss various templates that have been reported to activate RXR with a focus on their molecular structure, biological activity, and limitations. Finally, we will present an outlook of the field and future directions and considerations to synthesize or modulate RXR agonists to make these compounds a clinical reality.


Assuntos
Desenho de Fármacos , Receptores X de Retinoides/agonistas , Animais , Humanos , Conformação Proteica
2.
Eur J Med Chem ; 143: 936-947, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227933

RESUMO

Drug-resistant pathogens are a major cause of hospital- and community-associated bacterial infections in the United States and around the world. These infections are increasingly difficult to treat due to the development of antibiotic resistance and the formation of bacterial biofilms. In the paper, a series of phenazines were synthesized and evaluated for their in vitro antimicrobial activity against Gram positive (methicillin resistant staphylococcus aureus, MRSA) and Gram negative (Escherichia coli, E. coli) bacteria. The compound 6,9-dichloro-N-(methylsulfonyl)phenazine-1-carboxamide (18c) proved to be the most active molecule (MIC = 16 µg/mL) against MRSA whereas 9-methyl-N-(methylsulfonyl)phenazine-1-carboxamide (30e) showed good activity against both MRSA (MIC = 32 µg/mL) and E. coli (MIC = 32 µg/mL). Molecule 18c also demonstrated significant biofilm dispersion and inhibition against S. aureus. Preliminary studies indicate the molecules do not disturb bacterial membranes and there activity is not directly linked to the generation of reactive oxygen species. Compound 18c displayed minor toxicity against mammalian cells. Metabolic stability studies of the most promising compounds indicate stability towards phase I and phase II metabolizing enzymes.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Fenazinas/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fenazinas/química , Fenazinas/metabolismo , Teoria Quântica , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...