Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(15): 3866-3872, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29608859

RESUMO

The recombination dynamics of two oppositely charged bipolarons within a single polymer chain is numerically studied in the scope of a one-dimensional tight-binding model that considers electron-electron and electron-phonon (e-ph) interactions. By scanning among values of e-ph coupling and electric field, novel channels for the bipolaron recombination were yielded based on the interplay between these two parameters. The findings point to the formation of a compound species formed from the coupling between a bipolaron and an exciton. Depending on the electric field and e-ph coupling strengths, the recombination mechanism may yield two distinct products: a trapped (and almost neutral) or a moving (and partially charged) bipolaron-exciton. These results might enlighten the understanding of the electroluminescence processes in organic light-emitting devices.

2.
Sci Rep ; 8(1): 1914, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382862

RESUMO

The dynamical properties of polarons in armchair graphene nanoribbons (GNR) is numerically investigated in the framework of a two-dimensional tight-binding model that considers spin-orbit (SO) coupling and electron-lattice (e-l) interactions. Within this physical picture, novel polaron properties with no counterparts to results obtained from conventional tight-binding models are obtained. Our findings show that, depending on the system's width, the presence of SO coupling changes the polaron's charge localization giving rise to different degrees of stability for the charge carrier. For instance, the joint action of SO coupling and e-l interactions could promote a slight increase on the charge concentration in the center of the lattice deformation associated to the polaron. As a straightforward consequence, this process of increasing stability would lead to a depreciation in the polaron's motion by decreasing its saturation velocity. Our finds are in good agreement with recent experimental investigations for the charge localization in GNR, mostly when it comes to the influence of SO coupling. Moreover, the contributions reported here provide a reliable method for future works to evaluate spin-orbit influence on the performance of graphene nanoribbons.

3.
J Mol Model ; 23(7): 196, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28589463

RESUMO

We present an extensive study of the optical properties of Myrcia sylvatica essential oil with the goal of investigating the suitability of its material system for uses in organic photovoltaics. The methods of extraction, experimental analysis, and theoretical modeling are described in detail. The precise composition of the oil in our samples is determined via gas chromatography, mass spectrometry, and X-ray scattering techniques. The measurements indicate that, indeed, the material system of Myrcia sylvatica essential oil may be successfully employed for the design of organic photovoltaic devices. The optical absorption of the molecules that compose the oil are calculated using time-dependent density functional theory and used to explain the measured UV-Vis spectra of the oil. We show that it is sufficient to consider the α-bisabolol/cadalene pair, two of the main constituents of the oil, to obtain the main features of the UV-Vis spectra. This finding is of importance for future works that aim to use Myrcia sylvatica essential oil as a photovoltaic material.


Assuntos
Myrtaceae/química , Óleos Voláteis/química , Cromatografia Gasosa , Espectrometria de Massas , Difração de Raios X
4.
J Mol Model ; 23(5): 153, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28378241

RESUMO

Pentacene is an organic semiconductor that draws special attention from the scientific community due to the high mobility of its charge carriers. As electron-hole interactions are important aspects in the regard of such property, a computationally inexpensive method to predict the coupling between these quasi-particles is highly desired. In this work, we propose a hybrid methodology of combining Uncoupled Monte Carlo Simulations (UMC) and Density functional Theory (DFT) methodologies to obtain a good compromise between computational feasibility and accuracy. As a first step in considering a Pentacene crystal, we describe its unit cell: the Pentacene Dimer. Because many conformations can be encountered for the dimer and considering the complexity of the system, we make use of UMC in order to find the most probable structures and relative orientations for the Pentacene-Pentacene complex. Following, we carry out electronic structure calculations in the scope of DFT with the goal of describing the electron-hole coupling on the most probable configurations obtained by UMC. The comparison of our results with previously reported data on the literature suggests that the methodology is well suited for describing transfer integrals of organic semiconductors. The observed accuracy together with the smaller computational cost required by our approach allows us to conclude that such methodology might be an important tool towards the description of systems with higher complexity.

5.
J Chem Phys ; 146(14): 144903, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28411599

RESUMO

The transport of polarons above the mobility threshold in organic and inorganic polymers is theoretically investigated in the framework of a one-dimensional tight-binding model that includes lattice relaxation. The computational approach is based on parameters for which the model Hamiltonian suitably describes different polymer lattices in the presence of external electric fields. Our findings show that, above critical field strengths, a dissociated polaron moves through the polymer lattice as a free electron performing Bloch oscillations. These critical electric fields are considerably smaller for inorganic lattices in comparison to organic polymers. Interestingly, for inorganic lattices, the free electron propagates preserving charge and spin densities' localization which is a characteristic of a static polaron. Moreover, in the turning points of the spatial Bloch oscillations, transient polaron levels are formed inside the band gap, thus generating a fully characterized polaron structure. For the organic case, on the other hand, no polaron signature is observed: neither in the shape of the distortion-those polaron profile signatures are absent-nor in the energy levels-as no such polaron levels are formed during the simulation. These results solve controversial aspects concerning Bloch oscillations recently reported in the literature and may enlighten the understanding about the charge transport mechanism in polymers above their mobility edge.

6.
J Mol Model ; 23(2): 42, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28154979

RESUMO

Based on a one-dimensional Su-Schrieffer-Heeger (SSH) model with electron correlation considered within the extended Hubbard model (EHM), we investigate the role played by electron-phonon coupling constant on intrachain polaron recombination in conjugated polymers. Our results suggest that a competition between external electric field and electron-phonon coupling on defining the behavior of the charge distribution of the system takes place. Whereas increasing electric field plays the role of destabilizing the charge carriers, an increase of the electron-phonon coupling has the opposite effect. Therefore, a suitable balance of these properties can give rise to the correct description of charge carrier dynamics in conducting polymers.

7.
Phys Chem Chem Phys ; 17(2): 1299-308, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25423278

RESUMO

The influence of different charge carrier concentrations on the recombination dynamics between oppositely charged polarons is numerically investigated using a modified version of the Su-Schrieffer-Heeger (SSH) model that includes an external electric field and electron-electron interactions. Our findings show that the external electric field can play the role of avoiding the formation of excited states (polaron-exciton and neutral excitation) leading the system to a dimerized lattice. Interestingly, depending on a suitable balance between the polaron concentration and the electric field strength, the recombination mechanism can form stable polaron-excitons or neutral excitations. These results may provide guidance to improve the electroluminescence efficiency in Polymer Light Emitting Diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...