Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 18(5)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37494940

RESUMO

Natural polymeric nanobiocomposites hold promise in repairing damaged bone tissue in tissue engineering. These materials create an extracellular matrix (ECM)-like microenvironment that induces stem cell differentiation. In this study, we investigated a new cytocompatible nanobiocomposite made from cotton cellulose nanofibers (CNFs) combined with chitosan polymer to induce osteogenic stem cell differentiation. First, we characterized the chemical composition, nanotopography, swelling properties, and mechanical properties of the cotton CNF/chitosan nanobiocomposite scaffold. Then, we examined the biological characteristics of the nanocomposites to evaluate their cytocompatibility and osteogenic differentiation potential using human mesenchymal stem cells derived from exfoliated deciduous teeth. The results showed that the nanobiocomposite exhibited favorable cytocompatibility and promoted osteogenic differentiation of cells without the need for chemical inducers, as demonstrated by the increase in alkaline phosphatase activity and ECM mineralization. Therefore, the cotton CNF/chitosan nanobiocomposite scaffold holds great promise for bone tissue engineering applications.


Assuntos
Quitosana , Nanofibras , Humanos , Engenharia Tecidual/métodos , Quitosana/química , Osteogênese , Alicerces Teciduais/química , Nanofibras/química , Celulose , Células Cultivadas , Osso e Ossos , Diferenciação Celular , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...