Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell Genom ; 3(12): 100443, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116115

RESUMO

Genomic sequencing has emerged as a powerful tool to enhance early pathogen detection and characterization with implications for public health and clinical decision making. Although widely available in developed countries, the application of pathogen genomics among low-resource, high-disease burden settings remains at an early stage. In these contexts, tailored approaches for integrating pathogen genomics within infectious disease control programs will be essential to optimize cost efficiency and public health impact. We propose a framework for embedding pathogen genomics within national surveillance plans across a spectrum of surveillance and laboratory capacities. We adopt a public health approach to genomics and examine its application to high-priority diseases relevant in resource-limited settings. For each grouping, we assess the value proposition for genomics to inform public health and clinical decision-making, alongside its contribution toward research and development of novel diagnostics, therapeutics, and vaccines.

2.
PLoS Negl Trop Dis ; 17(10): e0011728, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37903147

RESUMO

BACKGROUND: Shigella sonnei is a pathogen of growing global importance as a cause of diarrhoeal illness in childhood, particularly in transitional low-middle income countries (LMICs). Here, we sought to determine the incidence of childhood exposure to S. sonnei infection in a contemporary transitional LMIC population, where it represents the dominant Shigella species. METHODS: Participants were enrolled between the age of 12-36 months between June and December 2014. Baseline characteristics were obtained through standardized electronic questionnaires, and serum samples were collected at 6-month intervals over two years of follow-up. IgG antibody against S. sonnei O-antigen (anti-O) was measured using an enzyme-linked immunosorbent assay (ELISA). A four-fold increase in ELISA units (EU) with convalescent IgG titre >10.3 EU was taken as evidence of seroconversion between timepoints. RESULTS: A total of 3,498 serum samples were collected from 748 participants; 3,170 from the 634 participants that completed follow-up. Measures of anti-O IgG varied significantly by calendar month (p = 0.03). Estimated S. sonnei seroincidence was 21,451 infections per 100,000 population per year (95% CI 19,307-23,834), with peak incidence occurring at 12-18 months of age. Three baseline factors were independently associated with the likelihood of seroconversion; ever having breastfed (aOR 2.54, CI 1.22-5.26), history of prior hospital admission (aOR 0.57, CI 0.34-0.95), and use of a toilet spray-wash in the household (aOR 0.42, CI 0.20-0.89). CONCLUSIONS: Incidence of S. sonnei exposure in Ho Chi Minh City is substantial, with significant reduction in the likelihood of exposure as age increases beyond 2 years.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Shigella sonnei , Vietnã/epidemiologia , Antígenos O , Imunoglobulina G , Disenteria Bacilar/epidemiologia
3.
Int Dent J ; 73(3): 435-442, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36402577

RESUMO

OBJECTIVES: The COVID-19 vaccine is currently being administered worldwide to address the ongoing pandemic. Although these vaccines have proven effective in preventing severe disease, the level of immunity required to prevent respiratory mucosal infection remains less well understood. Therefore, it is desirable to develop a noninvasive screening strategy such as oral fluid to monitor secreted antibodies longitudinally as potential surrogates of mucosal immunity. METHODS: We evaluated the anti-spike protein antibodies in gingival crevicular fluid (GCF) and saliva and compared them to immune responses in the blood of 50 healthy health care workers following 2 doses of intramuscular Pfizer/BioNTech-BNT162b2 vaccine. RESULTS: The antibodies to SARS-CoV-2 spike and subdomain proteins (RBD, S1, S2, and NTD) were significantly higher in serum than oral fluids but showed a greater detection rate and higher median titres in GCF than saliva. For all tested SARS-CoV-2 antigens, IgG in GCF (as opposed to saliva) showed a more significant and stronger correlation with IgG in serum. Serum-neutralising antibodies (Nab) titres also displayed a significant and stronger correlation with anti-spike protein and their subdomains in GCF than saliva. Interestingly, the time post-second dose of vaccine and sex had a similar influence on IgG in serum and GCF. However, interferon (IFN)-γ-producing T-cell responses showed no association with SARS-Cov-2 IgG antibodies in serum, GCF, or saliva and neutralisation antibodies in serum. The correlation matrix of all measured parameters grouped serum and GCF IgG parameters separately from salivary IgG parameters indicating that GCF better represents the humoural response in serum than saliva. CONCLUSIONS: Within limitations, we propose that GCF could be a less invasive alternative to serum and more appropriate than saliva to detect antibody responses by current COVID-19 vaccines if the GCF collection procedure could be standardised. Further research is needed to investigate the suitability of GCF for community immune surveillance for vaccines.


Assuntos
Vacina BNT162 , COVID-19 , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Imunoglobulina G , Imunidade , Anticorpos Antivirais
4.
NPJ Vaccines ; 7(1): 161, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513697

RESUMO

Coronavirus disease-19 (Covid-19) pandemic have demonstrated the importantance of vaccines in disease prevention. Self-amplifying mRNA vaccines could be another option for disease prevention if demonstrated to be safe and immunogenic. Phase 1 of this randomized, double-blinded, placebo-controlled trial (N = 42) assessed the safety, tolerability, and immunogenicity in healthy young and older adults of ascending levels of one-dose ARCT-021, a self-amplifying mRNA vaccine against Covid-19. Phase 2 (N = 64) tested two-doses of ARCT-021 given 28 days apart. During phase 1, ARCT-021 was well tolerated up to one 7.5 µg dose and two 5.0 µg doses. Local solicited AEs, namely injection-site pain and tenderness were more common in ARCT-021vaccinated, while systemic solicited AEs, mainly fatigue, headache and myalgia were reported in 62.8% and 46.4% of ARCT-021 and placebo recipients, respectively. Seroconversion rate for anti-S IgG was 100% in all cohorts, except for the 1 µg one-dose in younger adults and the 7.5 µg one-dose in older adults. Anti-S IgG and neutralizing antibody titers showed a general increase with increasing dose, and overlapped with titers in Covid-19 convalescent patients. T-cell responses were also observed in response to stimulation with S-protein peptides. Taken collectively, ARCT-021 is immunogenic and has favorable safety profile for further development.

5.
NPJ Vaccines ; 7(1): 154, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443317

RESUMO

Remarkable potency has been demonstrated for mRNA vaccines in reducing the global burden of the ongoing COVID-19 pandemic. An alternative form of the mRNA vaccine is the self-amplifying mRNA (sa-mRNA) vaccine, which encodes an alphavirus replicase that self-amplifies the full-length mRNA and SARS-CoV-2 spike (S) transgene. However, early-phase clinical trials of sa-mRNA COVID-19 vaccine candidates have questioned the potential of this platform to develop potent vaccines. We examined the immune gene response to a candidate sa-mRNA vaccine against COVID-19, ARCT-021, and compared our findings to the host response to other forms of vaccines. In blood samples from healthy volunteers that participated in a phase I/II clinical trial, greater induction of transcripts involved in Toll-like receptor (TLR) signalling, antigen presentation and complement activation at 1 day post-vaccination was associated with higher anti-S antibody titers. Conversely, transcripts involved in T-cell maturation at day 7 post-vaccination informed the magnitude of eventual S-specific T-cell responses. The transcriptomic signature for ARCT-021 vaccination strongly correlated with live viral vector vaccines, adjuvanted vaccines and BNT162b2 1 day post-vaccination. Moreover, the ARCT-021 signature correlated with day 7 YF17D live-attenuated vaccine transcriptomic responses. Altogether, our findings show that sa-mRNA vaccination induces innate immune responses that are associated with the development of adaptive immunity from other forms of vaccines, supporting further development of this vaccine platform for clinical application.

6.
Pathogens ; 11(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631089

RESUMO

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a high throughput serological technology that is revolutionizing the manner in which we track antibody profiles. In this review, we mainly focus on its application to viral infectious diseases. Through the pull-down of patient antibodies using peptide-tile-expressing T7 bacteriophages and detection using next-generation sequencing (NGS), PhIP-Seq allows the determination of antibody repertoires against peptide targets from hundreds of proteins and pathogens. It differs from conventional serological techniques in that PhIP-Seq does not require protein expression and purification. It also allows for the testing of many samples against the whole virome. PhIP-Seq has been successfully applied in many infectious disease investigations concerning seroprevalence, risk factors, time trends, etiology of disease, vaccinology, and emerging pathogens. Despite the inherent limitations of this technology, we foresee the future expansion of PhIP-Seq in both investigative studies and tracking of current, emerging, and novel viruses. Following the review of PhIP-Seq technology, its limitations, and applications, we recommend that PhIP-Seq be integrated into national surveillance programs and be used in conjunction with molecular techniques to support both One Health and pandemic preparedness efforts.

7.
PLoS Biol ; 20(5): e3001643, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639676

RESUMO

Ensuring high vaccination and even booster vaccination coverage is critical in preventing severe Coronavirus Disease 2019 (COVID-19). Among the various COVID-19 vaccines currently in use, the mRNA vaccines have shown remarkable effectiveness. However, systemic adverse events (AEs), such as postvaccination fatigue, are prevalent following mRNA vaccination, and the underpinnings of which are not understood. Herein, we found that higher baseline expression of genes related to T and NK cell exhaustion and suppression were positively correlated with the development of moderately severe fatigue after Pfizer-BioNTech BNT162b2 vaccination; increased expression of genes associated with T and NK cell exhaustion and suppression reacted to vaccination were associated with greater levels of innate immune activation at 1 day postvaccination. We further found, in a mouse model, that altering the route of vaccination from intramuscular (i.m.) to subcutaneous (s.c.) could lessen the pro-inflammatory response and correspondingly the extent of systemic AEs; the humoral immune response to BNT162b2 vaccination was not compromised. Instead, it is possible that the s.c. route could improve cytotoxic CD8 T-cell responses to BNT162b2 vaccination. Our findings thus provide a glimpse of the molecular basis of postvaccination fatigue from mRNA vaccination and suggest a readily translatable solution to minimize systemic AEs.


Assuntos
COVID-19 , Animais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Fadiga/etiologia , Humanos , Células Matadoras Naturais , Camundongos , RNA Mensageiro/genética , Vacinação/efeitos adversos
9.
Med ; 3(2): 104-118.e4, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35072129

RESUMO

BACKGROUND: Protection offered by coronavirus disease 2019 (COVID-19) vaccines wanes over time, requiring an evaluation of different boosting strategies to revert such a trend and enhance the quantity and quality of Spike-specific humoral and cellular immune responses. These immunological parameters in homologous or heterologous vaccination boosts have thus far been studied for mRNA and ChAdOx1 nCoV-19 vaccines, but knowledge on individuals who received a single dose of Ad26.COV2.S is lacking. METHODS: We studied Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals (n = 55) who were either primed with Ad26.COV2.S only (n = 13) or were boosted with a homologous (Ad26.COV2.S, n = 28) or heterologous (BNT162b2, n = 14) second dose. We compared our findings with the results found in individuals vaccinated with a single (n = 16) or double (n = 44) dose of BNT162b2. FINDINGS: We observed that a strategy of heterologous vaccination enhanced the quantity and breadth of both Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals. In contrast, the impact of the homologous boost was quantitatively minimal in Ad26.COV2.S-vaccinated individuals, and Spike-specific antibodies and T cells were narrowly focused to the S1 region. CONCLUSIONS: Despite the small sample size of the study and the lack of well-defined correlates of protection against COVID-19, the immunological features detected support the utilization of a heterologous vaccine boost in individuals who received Ad26.COV2.S vaccination. FUNDING: This study is partially supported by the Singapore Ministry of Health's National Medical Research Council under its COVID-19 Research Fund (COVID19RF3-0060, COVID19RF-001, and COVID19RF-008), The Medical College St. Bartholomew's Hospital Trustees - Pump Priming Fund for SMD COVID-19 Research.


Assuntos
Ad26COVS1 , COVID-19 , Anticorpos Neutralizantes , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2
10.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623327

RESUMO

Defining the correlates of protection necessary to manage the COVID-19 pandemic requires the analysis of both antibody and T cell parameters, but the complexity of traditional tests limits virus-specific T cell measurements. We tested the sensitivity and performance of a simple and rapid SARS-CoV-2 spike protein-specific T cell test based on the stimulation of whole blood with peptides covering the SARS-CoV-2 spike protein, followed by cytokine (IFN-γ, IL-2) measurement in different cohorts including BNT162b2-vaccinated individuals (n = 112), convalescent asymptomatic and symptomatic COVID-19 patients (n = 130), and SARS-CoV-1-convalescent individuals (n = 12). The sensitivity of this rapid test is comparable to that of traditional methods of T cell analysis (ELISPOT, activation-induced marker). Using this test, we observed a similar mean magnitude of T cell responses between the vaccinees and SARS-CoV-2 convalescents 3 months after vaccination or virus priming. However, a wide heterogeneity of the magnitude of spike-specific T cell responses characterized the individual responses, irrespective of the time of analysis. The magnitude of these spike-specific T cell responses cannot be predicted from the neutralizing antibody levels. Hence, both humoral and cellular spike-specific immunity should be tested after vaccination to define the correlates of protection necessary to evaluate current vaccine strategies.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19 , Imunidade Celular/efeitos dos fármacos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T , Adulto , Vacina BNT162 , COVID-19/sangue , COVID-19/imunologia , COVID-19/prevenção & controle , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
JCI Insight ; 6(21)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34582377

RESUMO

Chikungunya is a mosquito-borne disease that causes periodic but explosive epidemics of acute disease throughout the tropical world. Vaccine development against chikungunya virus (CHIKV) has been hampered by an inability to conduct efficacy trials due to the unpredictability of CHIKV outbreaks. Therefore, immune correlates are being explored to gain inference into vaccine-induced protection. This study is an in-depth serological characterization of Fab- and Fc-mediated antibody responses in selected phase II clinical trial participants following immunization with the recombinant measles-vectored CHIKV vaccine, MV-CHIK. Antibody comparisons were conducted between participants who received prime and those who received prime-boost vaccine regimens. MV-CHIK vaccination elicited potent Fab-mediated antibody responses (such as CHIKV-specific IgG, neutralization, and avidity), including dominant IgG3 responses, which translated into strong antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. At 1 month, prime-boost immunization led to significantly greater responses in every measured Fab and Fc antibody parameter. Interestingly, prime-boost-elicited antibodies decreased rapidly over time, until at 6 months both vaccine regimens displayed similar antibody profiles. Nonetheless, antibody avidity and antibody-dependent cellular phagocytosis remained significantly greater following boost immunization. Our observations suggest that a prime-boost administration of MV-CHIK will be more appropriate for CHIKV-endemic regions, while a prime-only regimen may be sufficient for travel purposes or outbreak situations.


Assuntos
Anticorpos Antivirais/metabolismo , Febre de Chikungunya/tratamento farmacológico , Imunização/métodos , Vacinas Virais/uso terapêutico , Feminino , Humanos , Masculino , Vacinas Virais/farmacologia
12.
Science ; 372(6546): 1041-1042, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34083476
13.
Emerg Microbes Infect ; 10(1): 1457-1470, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34120576

RESUMO

Zika virus (ZIKV) is an emerging arbovirus with recent global expansion. Historically, ZIKV infections with Asian lineages have been associated with mild disease such as rash and fever. However, recent Asian sub-lineages have caused outbreaks in the South Pacific and Latin America with increased prevalence of neurological disorders in infants and adults. Asian sub-lineage differences may partially explain the range of disease severity observed. However, the effect of Asian sub-lineage differences on pathogenesis remains poorly characterized. Current study conducts a head-to-head comparison of three Asian sub-lineages that are representative of the circulating ancestral mild Asian strain (ZIKV-SG), the 2007 epidemic French Polynesian strain (ZIKV-FP), and the 2013 epidemic Brazil strain (ZIKV-Brazil) in adult Cynomolgus macaques. Animals infected intervenously or subcutaneously with either of the three clinical isolates showed sub-lineage-specific differences in viral pathogenesis, early innate immune responses and systemic inflammation. Despite the lack of neurological symptoms in infected animals, the epidemiologically neurotropic ZIKV sub-lineages (ZIKV-Brazil and/or ZIKV-FP) were associated with more sustained viral replication, higher systemic inflammation (i.e. higher levels of TNFα, MCP-1, IL15 and G-CSF) and greater percentage of CD14+ monocytes and dendritic cells in blood. Multidimensional analysis showed clustering of ZIKV-SG away from ZIKV-Brazil and ZIKV-FP, further confirming sub-lineage differences in the measured parameters. These findings highlight greater systemic inflammation and monocyte recruitment as possible risk factors of adult ZIKV disease observed during the 2007 FP and 2013 Brazil epidemics. Future studies should explore the use of anti-inflammatory therapeutics as early treatment to prevent ZIKV-associated disease in adults.


Assuntos
Imunidade Inata , Infecção por Zika virus/imunologia , Zika virus/classificação , Zika virus/imunologia , Zika virus/patogenicidade , Adulto , Animais , Ásia , Brasil , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Interleucina-15/genética , Interleucina-15/imunologia , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Monócitos/imunologia , Especificidade da Espécie , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Virulência , Replicação Viral , Zika virus/genética , Infecção por Zika virus/virologia
14.
Med ; 2(6): 682-688.e4, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33851143

RESUMO

BACKGROUND: RNA vaccines against coronavirus disease 2019 (COVID-19) have demonstrated ∼95% efficacy in phase III clinical trials. Although complete vaccination consisted of 2 doses, the onset of protection for both licensed RNA vaccines was observed as early as 12 days after a single dose. The adaptive immune response that coincides with this onset of protection could represent the necessary elements of immunity against COVID-19. METHODS: Serological and T cell analysis was performed in a cohort of 20 healthcare workers after receiving the first dose of the Pfizer/BioNTech BNT162b2 vaccine. The primary endpoint was the adaptive immune responses detectable at days 7 and 10 after dosing. FINDINGS: Spike-specific T cells and binding antibodies were detectable 10 days after the first dose of the vaccine, in contrast to receptor-blocking and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) neutralizing antibodies, which were mostly undetectable at this early time point. CONCLUSIONS: Our findings suggest that early T cell and binding antibody responses, rather than either receptor-blocking or virus neutralizing activity, induced early protection against COVID-19. FUNDING: The study was funded by a generous donation from The Hour Glass to support COVID-19 research.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Humanos , Imunoglobulina G , RNA , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T , Vacinas Sintéticas , Vacinas de mRNA
15.
Mol Ther ; 29(6): 1970-1983, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33823303

RESUMO

A self-transcribing and replicating RNA (STARR)-based vaccine (LUNAR-COV19) has been developed to prevent SARS-CoV-2 infection. The vaccine encodes an alphavirus-based replicon and the SARS-CoV-2 full-length spike glycoprotein. Translation of the replicon produces a replicase complex that amplifies and prolongs SARS-CoV-2 spike glycoprotein expression. A single prime vaccination in mice led to robust antibody responses, with neutralizing antibody titers increasing up to day 60. Activation of cell-mediated immunity produced a strong viral antigen-specific CD8+ T lymphocyte response. Assaying for intracellular cytokine staining for interferon (IFN)γ and interleukin-4 (IL-4)-positive CD4+ T helper (Th) lymphocytes as well as anti-spike glycoprotein immunoglobulin G (IgG)2a/IgG1 ratios supported a strong Th1-dominant immune response. Finally, single LUNAR-COV19 vaccination at both 2 µg and 10 µg doses completely protected human ACE2 transgenic mice from both mortality and even measurable infection following wild-type SARS-CoV-2 challenge. Our findings collectively suggest the potential of LUNAR-COV19 as a single-dose vaccine.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/administração & dosagem , Alphavirus/genética , Alphavirus/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/biossíntese , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Feminino , Expressão Gênica , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Camundongos , Camundongos Transgênicos , Replicon/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/virologia , Transgenes , Resultado do Tratamento , Vacinação/métodos , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de mRNA
16.
Genome Med ; 13(1): 8, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33451348

RESUMO

BACKGROUND: Shigella is a major diarrheal pathogen for which there is presently no vaccine. Whole genome sequencing provides the ability to predict and derive novel antigens for use as vaccines. Here, we aimed to identify novel immunogenic Shigella antigens that could serve as Shigella vaccine candidates, either alone, or when conjugated to Shigella O-antigen. METHODS: Using a reverse vaccinology approach, where genomic analysis informed the Shigella immunome via an antigen microarray, we aimed to identify novel immunogenic Shigella antigens. A core genome analysis of Shigella species, pathogenic and non-pathogenic Escherichia coli, led to the selection of 234 predicted immunogenic Shigella antigens. These antigens were expressed and probed with acute and convalescent serum from microbiologically confirmed Shigella infections. RESULTS: Several Shigella antigens displayed IgG and IgA seroconversion, with no difference in sero-reactivity across by sex or age. IgG sero-reactivity to key Shigella antigens was observed at birth, indicating transplacental antibody transfer. Six antigens (FepA, EmrK, FhuA, MdtA, NlpB, and CjrA) were identified in in vivo testing as capable of producing binding IgG and complement-mediated bactericidal antibody. CONCLUSIONS: These findings provide six novel immunogenic Shigella proteins that could serve as candidate vaccine antigens, species-specific carrier proteins, or targeted adjuvants.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas contra Shigella/imunologia , Formação de Anticorpos/imunologia , Proteínas de Bactérias/imunologia , Biologia Computacional , Disenteria Bacilar/sangue , Disenteria Bacilar/imunologia , Disenteria Bacilar/microbiologia , Sangue Fetal/imunologia , Genoma Humano , Humanos , Imunização , Imunoglobulina G/sangue , Soroconversão
17.
Curr Treat Options Infect Dis ; 12(4): 398-409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173445

RESUMO

At the turn of the nineteenth century, yellow fever (YF) was considered the most dangerous infectious disease with high case fatality. Subsequent, mass vaccination campaigns coupled with widespread elimination of the YF mosquito vector significantly decreased YF cases and reduced outbreaks to the tropical and subtropical forested regions of Africa and South America. However, recent (2016) large outbreaks in Angola, Democratic Republic of Congo (DRC), and South-Eastern Brazil, where previously had been demarcated as low-risk regions, have highlighted the possibility of a rapidly changing epidemiology and the potential re-emergence of yellow fever virus (YFV). Furthermore, the first-ever importation of YFV into Asia has highlighted the potential fear of YFV emerging as a global threat. In this review, we describe the changing epidemiology of YF outbreaks, and highlight the use of public health policies, therapeutics, and vaccination as tools to help eliminate future YFV outbreaks.

18.
Curr Treat Options Infect Dis ; 12(3): 349-360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32837338

RESUMO

PURPOSE OF REVIEW: At the turn of the nineteenth century, yellow fever (YF) was considered the most dangerous infectious disease with high case fatality. Subsequent, mass vaccination campaigns coupled with widespread elimination of the YF mosquito vector significantly decreased YF cases and reduced outbreaks to the tropical and subtropical forested regions of Africa and South America. RECENT FINDINGS: However, recent (2016) large outbreaks in Angola, Democratic Republic of Congo (DRC), and South-Eastern Brazil, where previously had been demarcated as low-risk regions, have highlighted the possibility of a rapidly changing epidemiology and the potential re-emergence of yellow fever virus (YFV). Furthermore, the first-ever importation of YFV into Asia has highlighted the potential fear of YFV emerging as a global threat. SUMMARY: In this review, we describe the changing epidemiology of YF outbreaks and highlight the use of public health policies, therapeutics, and vaccination as tools to help eliminate future YFV outbreaks.

19.
J Biomed Sci ; 27(1): 50, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32264870

RESUMO

BACKGROUND: The association of functionality and phenotype of follicular helper T cells (Tfh) with dengue virus (DENV) specific antibody responses and clinical disease severity has not been well studied. METHODS: We investigated the phenotype and functionality of Tfh cells and plasmablasts in adult patients (DF = 18, DHF = 22) with acute dengue (day 4 to 8 since onset of fever) of varying severity using multiparametric flowcytometry. The properties of Tfh cells were correlated with viraemia, disease severity, plasmablast responses and DENV-specific serum antibody responses. We further evaluated the kinetics of neutralizing antibodies (Neut50) throughout the course of illness in order to evaluate their association with clinical disease severity and viraemia. RESULTS: Tfh cells (especially those producing IL-21 and co-expressing PD-1 and ICOS) were found to be significantly expanded (p < 0.0001) and highly activated in patients with DHF compared to those with DF. The frequency of Tfh cells significantly correlated with DENV-specific IgG, NS1-specific antibodies and Neut50 antibody titres in patients with DHF but not in those with DF. Although the Neut50 titres increased during the course of acute secondary DENV infection, they showed differences based on serotype. For instance, the Neut50 titres were significantly higher during the latter part of illness in patients with DF compared to DHF in DENV1 infection, while in DENV2, patients with DHF had significantly higher titres. The viral loads during early illness did not correlate with the subsequent rise in the Neut50 antibody titres during any time point of illness. CONCLUSIONS: The expansion of Tfh cells is associated with DHF and DENV-specific IgG, NS1-specific and neutralizing antibodies. Neut50 titres did not associate with disease severity or viraemia at the point of first presentation during the febrile phase, but later titres do show differential association with severity in patients with DENV1 compared to DENV2.


Assuntos
Anticorpos Antivirais/metabolismo , Dengue/imunologia , Glicoproteínas/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Proteínas não Estruturais Virais/metabolismo , Doença Aguda , Adulto , Anticorpos Neutralizantes/metabolismo , Vírus da Dengue/fisiologia , Humanos , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
20.
EBioMedicine ; 55: 102768, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32344202

RESUMO

The pandemic spread of a novel coronavirus - SARS coronavirus-2 (SARS-CoV-2) as a cause of acute respiratory illness, named Covid-19, is placing the healthcare systems of many countries under unprecedented stress. Global economies are also spiraling towards a recession in fear of this new life-threatening disease. Vaccines that prevent SARS-CoV-2 infection and therapeutics that reduces the risk of severe Covid-19 are thus urgently needed. A rapid method to derive antiviral treatment for Covid-19 is the use of convalescent plasma derived hyperimmune globulin. However, both hyperimmune globulin and vaccine development face a common hurdle - the risk of antibody-mediated disease enhancement. The goal of this review is to examine the body of evidence supporting the hypothesis of immune enhancement that could be pertinent to Covid-19. We also discuss how this risk could be mitigated so that both hyperimmune globulin and vaccines could be rapidly translated to overcome the current global health crisis.


Assuntos
Anticorpos Antivirais/efeitos adversos , Infecções por Coronavirus/imunologia , Pandemias , Pneumonia Viral/imunologia , Vacinas Virais/imunologia , Internalização do Vírus , Animais , Anticorpos Antivirais/imunologia , COVID-19 , Vacinas contra COVID-19 , Ensaios Clínicos Fase I como Assunto , Convalescença , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Células Dendríticas/virologia , Saúde Global , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunização Passiva , Macrófagos/virologia , Modelos Animais , Monócitos/virologia , Pandemias/prevenção & controle , Plasma , Plasmaferese , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Receptores Fc/imunologia , Pesquisa Translacional Biomédica , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...