Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764542

RESUMO

The synergistic combination of hybrid perovskites with graphene-related materials is leading to optoelectronic devices with enhanced performance and stability. Still, taking advantage of the solution processing of perovskite onto graphene is especially challenging. Here, MAPbBr3 perovskite is grown on single-layer graphene/graphene oxide (Gr/GO) patterns with 120 µm periodicity using a solution-processed method. MAPbBr3 rounded crystals are formed with sizes ranging from nanometers to microns, either forming continuous films or dispersed particles. A detailed morphological and structural study reveals a fully oriented perovskite and very different growth habits on the Gr/GO micro-patterns, which we relate to the substrate characteristics and the nucleation rate. A simple method for controlling the nucleation rate is proposed based on the concentration of the precursor solution and the number of deposited perovskite layers. The photoluminescence is analyzed in terms of the crystal size, strain, and structural changes observed. Notably, the growth on top of Gr/GO leads to a huge photostability of the MAPbBr3 compared with that on glass. Especially outstanding is that of the microcrystals, which endure light densities as high as 130 kW/cm2. These results allow for anticipating the design of integrated nanostructures and nanoengineered devices by growing high-stability perovskite directly on Gr/GO substrates.

2.
Nanomaterials (Basel) ; 13(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903673

RESUMO

Laser-induced graphene (LIG) is a graphenic material synthesized from a polymeric substrate through point-by-point laser pyrolysis. It is a fast and cost-effective technique, and it is ideal for flexible electronics and energy storage devices, such as supercapacitors. However, the miniaturization of the thicknesses of the devices, which is important for these applications, has still not been fully explored. Therefore, this work presents an optimized set of laser conditions to fabricate high-quality LIG microsupercapacitors (MSC) from 60 µm thick polyimide substrates. This is achieved by correlating their structural morphology, material quality, and electrochemical performance. The fabricated devices show a high capacitance of 22.2 mF/cm2 at 0.05 mA/cm2, as well as energy and power densities comparable to those of similar devices that are hybridized with pseudocapacitive elements. The performed structural characterization confirms that the LIG material is composed of high-quality multilayer graphene nanoflakes with good structural continuity and an optimal porosity.

3.
Nanomaterials (Basel) ; 12(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458038

RESUMO

The high optical absorption and emission of bidimensional MoS2 are fundamental properties for optoelectronic and biodetection applications and the opportunity to retain these properties in high quality nano-sized flakes would bring further possibilities. Here, a large set of single-layer and few-layer (2-3 layers) MoS2 flakes with size in the range from 10 nm to 20 µm are obtained on sapphire by vapor deposition techniques and evaluated combining the information from the Raman phonons with photoluminescence (PL) and absorption bands. The flakes have triangular shape and are found to be progressively relaxed from the tensile strain imposed by the sapphire substrate as their size is reduced. An increasing hole doping as size decreases is deduced from the blue shift of the A1g phonon, related to charge transfer from adsorbed oxygen. No clear correlation is observed between defects density and size, therefore, doping would be favored by the preferential adsorption of oxygen at the edges of the flakes, being progressively more important as the edge/surface ratio is incremented. This hole doping also produces a shift of the PL band to higher energies, up to 60 meV. The PL intensity is not found to be correlated to the size but to the presence of defects. The trends with size for single-layer and for 2-3 layer samples are found to be similar and the synthesis method does not influence PL efficiency which remains high down to 40 nm being thus promising for nanoscale photonics.

4.
Small ; 18(1): e2105355, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767304

RESUMO

Remote temperature sensing at the micro- and nanoscale is key in fields such as photonics, electronics, energy, or biomedicine, with optical properties being one of the most used transducing mechanisms for such sensors. Ga2 O3 presents very high chemical and thermal stability, as well as high radiation resistance, becoming of great interest to be used under extreme conditions, for example, electrical and/or optical high-power devices and harsh environments. In this work, a luminescent and interferometric thermometer is proposed based on Fabry-Perot (FP) optical microcavities built on Cr-doped Ga2 O3 nanowires. It combines the optical features of the Cr3+ -related luminescence, greatly sensitive to temperature, and spatial confinement of light, which results in strong FP resonances within the Cr3+ broad band. While the chromium-related R lines energy shifts are adequate for low-temperature sensing, FP resonances extend the sensing range to high temperatures with excellent sensitivity. This thermometry system achieves micron-range spatial resolution, temperature precision of around 1 K, and a wide operational range, demonstrating to work at least in the 150-550 K temperature range. Besides, the temperature-dependent anisotropic refractive index and thermo-optic coefficient of this oxide have been further characterized by comparison to experimental, analytical, and finite-difference time-domain simulation results.

5.
Nanomaterials (Basel) ; 11(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33808013

RESUMO

The search for novel platforms and metamaterials for the enhancement of optical and particularly Raman signals is still an objective since optical techniques offer affordable, noninvasive methods with high spatial resolution and penetration depth adequate to detect and image a large variety of systems, from 2D materials to molecules in complex media and tissues. Definitely, plasmonic materials produce the most efficient enhancement through the surface-enhanced Raman scattering (SERS) process, allowing single-molecule detection, and are the most studied ones. Here we focus on less explored aspects of SERS such as the role of the inter-nanoparticle (NP) distance and the ultra-small NP size limit (down to a few nm) and on novel approaches involving graphene and graphene-related materials. The issues on reproducibility and homogeneity for the quantification of the probe molecules will also be discussed. Other light enhancement mechanisms, in particular resonant and interference Raman scatterings, as well as the platforms that allow combining several of them, are presented in this review with a special focus on the possibilities that graphene offers for the design and fabrication of novel architectures. Recent fluorescence enhancement platforms and strategies, so important for bio-detection and imaging, are reviewed as well as the relevance of graphene oxide and graphene/carbon nanodots in the field.

6.
Mater Des ; 192: 108702, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33154608

RESUMO

Size, shape and hot spots are crucial to optimize Raman amplification from metallic nanoparticle (NPs). The amplification from radius = 1.8 ± 0.4 nm ultra-small silver NPs was explored. Increasing NP density redshifts and widens their plasmon that, according to simulations for NPs arrays, is originated by the reduction of the interparticle distance, d, becoming remarkable for d ≤ R. Inter-particle interaction red-shifts (N130 nm) and widens (N90 nm) the standard plasmon of non-interacting spherical particles. Graphene partly delocalizes the carriers enhancing the NIR spectral weight. Raman amplification of graphene phonons is moderate and depends smoothly on d while that of Rhodamine 6G (R6G) varies almost exponentially due to their location at hotspots that depend strongly on d. The experimental correlation between amplification and plasmon position is well reproduced by simulations. The amplification originated by the ultra-small NPs is compared to that of larger particles, granular silver films with 7 < R < 15 nm grains, with similar extinction values. The amplification is found to be larger for the 1.8nm NPs due to the higher surface/volume ration that allows higher density of hot spots. It is demonstrated that Raman amplification can be efficiently increased by depositing low density layers of ultra-small NPs on top of granular films.

7.
Sci Rep ; 10(1): 16039, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994454

RESUMO

In this work we report on the characterization and biological functionalization of 2D MoS2 flakes, epitaxially grown on sapphire, to develop an optical biosensor for the breast cancer biomarker miRNA21. The MoS2 flakes were modified with a thiolated DNA probe complementary to the target biomarker. Based on the photoluminescence of MoS2, the hybridization events were analyzed for the target (miRNA21c) and the control non-complementary sequence (miRNA21nc). A specific redshift was observed for the hybridization with miRNA21c, but not for the control, demonstrating the biomarker recognition via PL. The homogeneity of these MoS2 platforms was verified with microscopic maps. The detailed spectroscopic analysis of the spectra reveals changes in the trion to excitation ratio, being the redshift after the hybridization ascribed to both peaks. The results demonstrate the benefits of optical biosensors based on MoS2 monolayer for future commercial devices.


Assuntos
Neoplasias da Mama/diagnóstico , MicroRNAs/genética , Hibridização de Ácido Nucleico/métodos , Biomarcadores Tumorais/genética , Técnicas Biossensoriais/métodos , Mama/química , Neoplasias da Mama/genética , DNA/análise , Dissulfetos/química , Feminino , Humanos , Luminescência , Molibdênio/química
8.
Nanomaterials (Basel) ; 10(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349274

RESUMO

The detection of Raman signals from diluted molecules or biomaterials in complex media is still a challenge. Besides the widely studied Raman enhancement by nanoparticle plasmons, interference mechanisms provide an interesting option. A novel approach for amplification platforms based on supported thin alumina membranes was designed and fabricated to optimize the interference processes. The dielectric layer is the extremely thin alumina membrane itself and, its metallic aluminum support, the reflecting medium. A CVD (chemical vapor deposition) single-layer graphene is transferred on the membrane to serve as substrate to deposit the analyte. Experimental results and simulations of the interference processes were employed to determine the relevant parameters of the structure to optimize the Raman enhancement factor (E.F.). Highly homogeneous E.F. over the platform surface are obtained, typically 370 ± (5%), for membranes with ~100 nm pore depth, ~18 nm pore diameter and the complete elimination of the Al2O3 bottom barrier layer. The combined surface enhanced Raman scattering (SERS) and interference amplification is also demonstrated by depositing ultra-small silver nanoparticles. This new approach to amplify the Raman signal of analytes is easily obtained, low-cost and robust with useful enhancement factors (~400) and allows only interference or combined enhancement mechanisms, depending on the analyte requirements.

9.
Small ; 15(40): e1902817, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31433561

RESUMO

A deep comprehension of the local anodic oxidation process in 2D materials is achieved thanks to an extensive experimental and theoretical study of this phenomenon in graphene. This requires to arrange a novel instrumental device capable to generate separated regions of monolayer graphene oxide (GO) over graphene, with any desired size, from micrometers to unprecedented mm2 , in minutes, a milestone in GO monolayer production. GO regions are manufactured by overlapping lots of individual oxide spots of thousands µm2 area. The high reproducibility and circular size of the spots allows not only an exhaustive experimental characterization inside, but also establishing an original model for oxide expansion which, from classical first principles, overcomes the traditional paradigm of the water bridge, and is applicable to any 2D-material. This tool predicts the oxidation behavior with voltage and exposure time, as well as the expected electrical current along the process. The hitherto unreported transient current is measured during oxidation, gaining insight on its components, electrochemical and transport. Just combining electrical measurements and optical imaging estimating carrier mobility and degree of oxidation is possible. X-ray photoelectron spectroscopy reveals a graphene oxidation about 30%, somewhat lower to that obtained by Hummers' method.

10.
Nanoscale Adv ; 1(2): 884-893, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132234

RESUMO

2D monolayer molybdenum disulphide (MoS2) has been the focus of intense research due to its direct bandgap compared with the indirect bandgap of its bulk counterpart; however its photoluminescence (PL) intensity is limited due to its low absorption efficiency. Herein, we use gallium hemispherical nanoparticles (Ga NPs) deposited by thermal evaporation on top of chemical vapour deposited MoS2 monolayers in order to enhance its luminescence. The influence of the NP radius and the laser wavelength is reported in PL and Raman experiments. In addition, the physics behind the PL enhancement factor is investigated. The results indicate that the prominent enhancement is caused by the localized surface plasmon resonance of the Ga NPs induced by a charge transfer phenomenon. This work sheds light on the use of alternative metals, besides silver and gold, for the improvement of MoS2 luminescence.

11.
ACS Appl Mater Interfaces ; 9(4): 4119-4125, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28054769

RESUMO

The detection, identification, and quantification of different types of molecules and the optical imaging of, for example, cellular processes are important challenges. Here, we present how interference-enhanced Raman scattering (IERS) in adequately designed heterostructures can provide amplification factors relevant for both detection and imaging. Calculations demonstrate that the key factor is maximizing the absolute value of the refractive indices' difference between dielectric and metal layers. Accordingly, Si/Al/Al2O3/graphene heterostructures have been fabricated by optimizing the thickness and roughness and reaching enhancement values up to 700 for 488 nm excitation. The deviation from the calculated enhancement, 1200, is mainly due to reflectivity losses and roughness of the Al layer. The IERS platforms are also demonstrated to improve significantly the quality of white light images of graphene and are foreseen to be adequate to reveal the morphology of 2D and biological materials. A graphene top layer is adequate for most organic molecule deposition and often quenches possible fluorescence, permitting Raman signal detection, which, for a rhodamine 6G (R6G) monolayer, presents a gain of 400. Without graphene, the nonquenched R6G fluorescence is similarly amplified. The wavelength dependence of the involved refractive indices predicts much higher amplification (around 104) for NIR excitation. These interference platforms can therefore be used to gain contrast and intensity in white light, Raman, and fluorescence imaging. We also demonstrate that surface-enhanced Raman scattering and IERS amplifications can be efficiently combined, leading to a gain of >105 (at 488 nm) by depositing a Ag nanostructured transparent film on the IERS platform. When the plasmonic structures deposited on the IERS platforms are optimized, single-molecule detection can be actively envisaged.

12.
Inorg Chem ; 55(8): 3980-91, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035091

RESUMO

The influence of particle size in both the structure and thermochromic behavior of 4H-SrMnO3 related perovskite is described. Microsized SrMnO3 suffers a structural transition from hexagonal (P63/mmc) to orthorhombic (C2221) symmetry at temperature close to 340 K. The orthorhombic distortion is due to the tilting of the corner-sharing Mn2O9 units building the 4H structural type. When temperature decreases, the distortion becomes sharper reaching its maximal degree at ∼125 K. These structural changes promote the modification of the electronic structure of orthorhombic SrMnO3 phase originating the observed color change. nano-SrMnO3 adopts the ideal 4H hexagonal structure at room temperature, the orthorhombic distortion being only detected at temperature below 170 K. A decrease in the orthorhombic distortion degree, compared to that observed in the microsample, may be the reason why a color change is not observed at low temperature (77 K).

13.
Sci Rep ; 4: 6735, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25339424

RESUMO

Nano-graphene oxide (nano-GO) is a new class of carbon based materials being proposed for biomedical applications due to its small size, intrinsic optical properties, large specific surface area, and easy to functionalize. To fully exploit nano-GO properties, a reproducible method for its production is of utmost importance. Herein we report, the study of the sequential fracture of GO sheets onto nano-GO with controllable lateral width, by a simple, and reproducible method based on a mechanism that we describe as a confined hot spot atomic fragmentation/reduction of GO promoted by ultrasonication. The chemical and structural changes on GO structure during the breakage were monitored by XPS, FTIR, Raman and HRTEM. We found that GO sheets starts breaking from the defects region and in a second phase through the disruption of carbon bonds while still maintaining crystalline carbon domains. The breaking of GO is accompanied by its own reduction, essentially by the elimination of carboxylic and carbonyl functional groups. Photoluminescence and photothermal studies using this nano-GO are also presented highlighting the potential of this nanomaterial as a unique imaging/therapy platform.

14.
ACS Appl Mater Interfaces ; 6(3): 1781-7, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24428380

RESUMO

Transparent and conductive indium titanium oxide (ITiO) films have been obtained by electron beam physical vapour deposition with Ti content from 5 at % up to 28 at %. X-ray absorption spectroscopy techniques have been used to identify the local environment of Ti ions. Even at the lowest concentrations Ti is not incorporated into the In2O3 structure but forms clusters of a Ti-In mixed oxide that present a distorted rutile TiO2 short-range order. The optical transmittance of the annealed samples reaches 95 % and no significant variation of the gap energy (around 3.7 eV) is observed with Ti content. The electronic conductivity under light irradiation is studied evidencing a huge photo-resistance in the samples with Ti content above 22 at % reaching more than two orders of magnitude for the 26 at % Ti under illumination with few µW/cm(2) at 365 nm. Hall and conductivity results are analyzed using a model that takes into account both electron and hole carriers as well as the conductivity enhancement by carrier photogeneration. The electron carrier density decreases with Ti content while its mobility increases up to values of 1000 cm(2)/(V s). Oxygen annealed ITiO films obtained by this technique with Ti content below 10 at % have properties adequate as transparent semiconductors and those with Ti content higher than 22 at % have exceptional photoresistive properties relevant for numerous applications.

15.
Inorg Chem ; 49(12): 5679-85, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20462198

RESUMO

The compounds of the title series have been prepared from citrate precursors under moderate pressure conditions (P = 2 GPa) and 1000 degrees C in the presence of KClO(4) as oxidizing agent. The crystal structures are cubic, space group Im3 (No. 204); the unit cell parameters linearly vary from a = 7.3272(4) A (R = La) to a = 7.2409(1) A (R = Lu) at room temperature. A neutron or synchrotron X-ray diffraction study of all the members of the series reveals an interesting correlation between some structural parameters and the magnetic properties. The electron injection effect upon replacement of Ca(2+) with R(3+) cations in the parent CaCu(3)Mn(4)O(12) oxide leads to a substantial increment of the ferrimagnetic Curie temperature (T(C)). An essential ingredient is supplied by the internal pressure of the R(3+) cations upon a decrease in size along the rare-earth series, from La to Lu: the concomitant compression of the MnO(6) octahedral units for the small rare earths provides progressively shorter Mn-O distances and improves the overlapping between Mn and O orbitals, thereby promoting superexchange and enhancing T(C) by 50 K along the series. This interaction is also reinforced by a ferromagnetic component that depends on the local distortion of the MnO(6) octahedra, which also increases along the series, constituting an additional factor, via intersite virtual charge transfer t-e orbital hybridization, for the observed increment of T(C).

16.
Environ Sci Technol ; 43(5): 1630-4, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19350946

RESUMO

Optimization of the interfacial agent content in biocidal titania-isotactic polypropylene nanocomposites is performed by evaluating their structural, thermal, optical, and biocidal properties. The balance between the photochemistry (photokilling) behavior and the thermal properties is achieved in the nanocomposites with an incorporation of 2 wt.% in inorganic nanoparticles (Tio2) using a compatibilizer content ranging from 50 to 80 wt.% with respect to the titania amount


Assuntos
Desinfetantes/farmacologia , Compostos Inorgânicos/farmacologia , Nanocompostos/química , Compostos Orgânicos/farmacologia , Titânio/química , Cristalização , Enterococcus faecalis/efeitos dos fármacos , Medições Luminescentes , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Polipropilenos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Espectrofotometria Ultravioleta , Análise Espectral Raman , Temperatura , Difração de Raios X
17.
J Phys Chem A ; 112(7): 1464-72, 2008 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-18225874

RESUMO

The possibilities of the use of Eu3+ in extracting information of the pressure effects on the nature of its crystal site in the NH4.Eu(SO4)2 catalytic host are closely inspected through the study of emission spectra for applied pressures up to 87 kbar. The phenomenological crystal field analysis of these spectra reveals clear discontinuities, at approximately 30 kbar, the sharper ones, and then at approximately 70 kbar, in crystal field strength trends, which taken together with structure-based simulations of crystal field interactions indicate well-defined pressure-induced anisotropic distortions in Eu3+ local environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...