Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 319: 115654, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792389

RESUMO

The treatment of winery wastes by using appropriate management technologies is of utmost need in order to reduce to a minimum their disposal and avoid negative environmental impacts. This is of particular interest for grape marc, the main solid by-product of the winery industry. However, comparative studies on a pilot-scale dealing with the impact of earthworms on marc derived from both red and white grape varieties during vermicomposting are still scarce. The present study sought to evaluate the changes in the biochemical and microbiological properties of red and white raw marc in the presence and the absence of the earthworm species Eisenia andrei. The distilled marc obtained through distillation of the red grape marc was also considered under this scenario. Samples were taken after 14, 28, 42, and 63 days of vermicomposting. On day 14 earthworms led to a pronounced increase in most of the enzymatic activities, but only in those vermireactors fed with raw marc from the red grape variety. Alfa- and beta-glucosidase as well as chitinase and leucine-aminopeptidase activities were between 3 to 5-times higher relative to the control, while alkaline phosphomonoesterase was even up to 14-fold higher with earthworm presence. From day 28 onwards the magnitude of earthworms' effect on the studied enzymes was also dependent on the type of grape marc. Reduced values of basal respiration, ranging between 200 and 350 mg CO2 kg OM h-1 and indicative of stabilized materials were found in the resulting vermicomposts. Moreover, the content of macro- and micronutrients in the end products matched with those considered to have the quality criteria of a good vermicompost. Altogether, these findings reinforce the effectiveness of vermicomposting for the biological stabilization of grape marc with the dual purpose of fertilizer production and environmental protection.


Assuntos
Oligoquetos , Vitis , Animais , Fertilizantes , Solo
2.
Bioresour Technol ; 345: 126572, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34921917

RESUMO

Vermicomposting is a biological process for efficient cattle manure treatment, but the vermicomposting time determines the quality of the vermicompost. The objective of this study was to evaluate the effect of cattle manure vermicomposting time on earthworm biomass and the changes in physical, chemical, and biological in properties of the vermicompost. The cattle manure was inoculated with Eisenia andrei earthworms and conducted vermicomposting for 0, 15, 30, 45, 60, and 120 days. The analysis of 44 chemical, physical, and biological properties allowed the vermicomposting process to be divided into initial (<45 days) and final (45-120 days) phases. The initial phase was characterized by high microbial activity and the final by high physical-chemical transformation of the vermicompost and an increase in earthworm density. The organic matter aromaticity increased until the 45th day, subsequently decreasing. Although 30 d of vermicompost are sufficient to obtain a high-quality organic fertilizer, 120 d are necessary for producing matrices.


Assuntos
Oligoquetos , Animais , Biomassa , Bovinos , Feminino , Esterco , Solo
3.
Microorganisms ; 7(10)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635111

RESUMO

Previous studies dealing with changes in microbial communities during vermicomposting were mostly performed at lab-scale conditions and by using low-throughput techniques. Therefore, we sought to characterize the bacterial succession during the vermicomposting of grape marc over a period of 91 days in a pilot-scale vermireactor. Samples were taken at the initiation of vermicomposting, and days 14, 28, 42, and 91, representing both active and mature stages of vermicomposting. By using 16S rRNA high-throughput sequencing, significant changes in the bacterial community composition of grape marc were found after 14 days and throughout the process (p < 0.0001). There was also an increase in bacterial diversity, both taxonomic and phylogenetic, from day 14 until the end of the trial. We found the main core microbiome comprised of twelve bacterial taxa (~16.25% of the total sequences) known to be capable of nitrogen fixation and to confer plant-disease suppression. Accordingly, functional diversity included increases in specific genes related to nitrogen fixation and synthesis of plant hormones (salicylic acid) after 91 days. Together, the findings support the use of grape marc vermicompost for sustainable practices in the wine industry by disposing of this high-volume winery by-product and capturing its value to improve soil fertility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...