Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(49): 107970-107992, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37749464

RESUMO

Two hydrogels were synthesized, characterized, and applied as alternative materials to remove melamine (MEL) from aqueous media by adsorption. For the first time, a complete study of MEL adsorption is presented, including optimization, kinetics, isotherm, reuse, and column studies with these new materials. One hydrogel is based on xylan and poly (acrylic acid) and was named HXy, and the other is based on the same components functionalized with activated carbon and was named HXy-AC. The materials were synthesized by free radical polymerization and characterized by FTIR, XRD, TGA, DSC, SEM, zeta potential, point of zero charge, N2 adsorption isotherms (BET), helium gas pycnometry, Archimedes method, swelling analysis, and stability tests. The characterization results confirmed the intended synthesis and showed the thermal, morphological, textural, structural, and compositional profile, as well as the adsorption characteristics of the materials. The adsorption studies in batch process included experimental design, kinetics, isotherms, and recyclability, and in continuous mode, the studies included fixed-bed column experiments. The full factorial design showed that adsorbent dosage, pH, and ionic strength are significant for adsorption capacity and removal percentage responses. Doehlert design enabled the definition of the values of adsorbent dosage and pH that were most suitable for MEL adsorption into the materials, indicating the optimal adsorption conditions. The kinetics were well described by the pseudo-first-order model, with R2 above 0.9920 for both materials at all concentrations tested. The isotherm obeyed the Langmuir model, with R2 above 0.9939 for both materials at all temperatures tested. Equilibrium was attained at 180 min, and the maximum experimental adsorption capacity was up to 132.46 and 118.96 mg g-1 at pH 7, with adsorbent dosage of 0.5 g L-1, and 298 K for HXy and HXy-AC, respectively. Furthermore, HXy and HXy-AC materials maintained about 58 and 70% of their initial adsorption capacity at the end of five adsorption/desorption cycles, respectively. Breakthrough curves were described by the Yan model and presented a maximum adsorption capacity of 30.2 and 30.4 mg g-1, treating 3.4 and 6.1 L of influent until the breakthrough point of 0.5 mg L-1 with HXy-AC using 2.0 and 4.0 g of material, respectively. These findings show that the hydrogels produced present the potential to be applied in the adsorption of basic molecules, such as MEL.


Assuntos
Poluentes Químicos da Água , Xilanos , Adsorção , Projetos de Pesquisa , Hidrogéis/química , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
Chemosphere ; 263: 127984, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32854010

RESUMO

Rare earth elements (REEs) are essential in high technology industries and have great economic value. The monitoring of REEs concentrations in rocks from oil well drill cuttings is critical to avoid environmental contamination and evaluate new sources of these elements. However, information is scarce about the REEs concentrations in drill cuttings. In this work, the concentration of REEs in drill cuttings from oil and gas exploration wells in ultradeep coastal water of Brazilian were investigated at different depths. The drill cutting samples were submitted to microwave-assisted acid digestion prior to the determination of concentration by ICP-MS, using Rh as internal standard for calibration. The limits of quantification (LoQ) ranged from 3.3 µg kg-1 for Ho to 198 µg kg-1 for Sm. The accuracy was evaluated by analyzing certified reference materials for rocks. The obtained REEs concentrations agreed with the certified values, reaching 83%-105% agreement. The drill cutting depth profile analysis indicates Ce, La, Nd, Sm, and Eu concentrations up to mg kg-1. The REEs concentrations obtained in drill cutting depth profile was analyzed by principal component analysis (PCA), and hierarchical cluster analysis (HCA) identified tendency and similarity between drill cutting samples. Three groups were formed according to the composition of the REEs. In addition, the concentration of these chemicals elements varied at different depths. The analysis of drill cuttings revealed REEs concentrations up to the mg per kg-range (ppm), potentially making this disposable material an alternative source for REEs extraction, and adding value to this material.


Assuntos
Monitoramento Ambiental , Metais Terras Raras/análise , Poluentes Químicos da Água/análise , Brasil , Mineração , Campos de Petróleo e Gás
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...