Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 42(12): 2619-2629, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32979133

RESUMO

OBJECTIVE: Fructooligosaccharides (FOS) are prebiotic substances that have been extensively incorporated in different products of food industry mostly for their bifidogenic properties and economic value. The main commercial FOS production comes from the biotransformation of sucrose and intracellular and extracellular microbial enzymes-fructosyltransferases (FTase). Aspergillus oryzae IPT-301 produces FTase. In order to increase its production, this study focuses on evaluating the effects of different agitation speed and aeration rates which affect yields in a stirred tank bioreactor. RESULTS: Agitation had more influence on cell growth than aeration. The maximum intracellular FTase activity and the volumetric productivity of total intracellular FTase were obtained at 800 rpm and 0.75 vvm, and reached values of 2100 U g-1 and 667 U dm-3 h-1, respectively. The agitation speed had a strong influence on the activity of extracellular FTase produced which reached the maximum amount of 53 U cm-3. The higher value of total activity obtained was 22,831 U dm-3 at 0.75 vvm and 800 rpm. CONCLUSION: Aeration rates and agitation speed showed strong influence upon the growth and production of fructosyltransferase from Aspergillus oryzae IPT-301 in media containing sucrose as carbon source. The control of aeration rate and agitation speed can be a valuable fermentation strategy to improve enzyme production.


Assuntos
Reatores Biológicos , Meios de Cultura/química , Hexosiltransferases/biossíntese , Oligossacarídeos/química , Aspergillus oryzae/química , Aspergillus oryzae/enzimologia , Carbono/química , Fermentação , Hexosiltransferases/química , Sacarose/química
2.
Braz J Microbiol ; 42(4): 1354-63, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031764

RESUMO

Polyhydroxyalkanoates (PHA) are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc) or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA), especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA) depending on the carbon source used.

3.
Braz J Microbiol ; 41(1): 186-95, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24031480

RESUMO

Aspergillus oryzae IPT-301, previously reported as a ß-fructofuranosidase producing microorganism, was successfully mutated using UV irradiation at 253.7 nm followed by the screening of survivors resistant to certain stress conditions. Strains were first subjected to the ß-fructofuranosidase activity assay using a portion from the colony grown in Petri dish as the enzyme source. Seven mutants with ß-fructofuranosidase activity values relative to the parent culture between 140 - 190% were selected from survivors grown at temperature of 40ºC or 0.018% (w/v) sodium dodecyl sulfate concentration. They were cultivated on a rotary shaker to characterize mycelium and extracellular fructosyltransferase activities. Three mutants named IPT-745, IPT-746 and IPT-748 showed the highest amount of mycelium activity whose values increased 1.5 - 1.8 fold, compared with the parent strain. It was found that more than 55% of total enzyme activity (mycelium- plus extracellular- activity) from these strains was detected in the mycelium fraction. Only one mutant, IPT-747, exceeded the amount of extracellular enzyme exhibited by the parent strain (1.5 times). This mutant also showed the highest value of total fructosyltransferase activity.

4.
Biotechnol Lett ; 30(11): 1867-77, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18612595

RESUMO

Fructooligosaccharides (FOS) are prebiotic substances found in several vegetable or natural foods. The main commercial production of FOS comes from enzymatic transformation of sucrose by the microbial enzyme fructosyltransferase. The development of more efficient enzymes, with high activity and stability, is required and this has attracted the interest of biotechnologists and microbiologists with production by several microorganisms being studied. This article reviews and discusses FOS chemical structure, enzyme characteristics, the nomenclature, producer microorganisms and enzyme production both in solid state fermentation and submerged cultivation.


Assuntos
Aspergillus/enzimologia , Hexosiltransferases/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Fermentação , Microbiologia Industrial/métodos
5.
Appl Microbiol Biotechnol ; 75(1): 87-93, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17375295

RESUMO

Seventeen different strains of filamentous fungi were grown in batch cultures to compare their abilities for the production of beta-fructofuranosidase. Three of them, Aspergillus oryzae IPT-301, Aspergillus niger ATCC 20611 and strain IPT-615, showed high production with total fructosyltransferase activity higher than 12,500 units l(-1). In addition, the beta-fructofuranosidases of those strains have a high fructosyltransferase activity-to-hydrolytic activity ratio. The temperature and pH effects on the sucrose-beta-fructofuranosidase reaction rate were studied using a 2(2) factorial experimental design. The comparative analysis of the tested variable coefficients shows that the variable pH contributes mostly to the changes in the fructosyltransferase and hydrolytic rates and in the V (t)/V (h) ratio. At 40 and 50 degrees C, there were no significant differences between the fructosyltransferase and hydrolytic velocities of these enzymes.


Assuntos
Fungos/enzimologia , Microbiologia Industrial/métodos , Saccharum/crescimento & desenvolvimento , Microbiologia do Solo , beta-Frutofuranosidase/metabolismo , Aspergillus niger/enzimologia , Aspergillus oryzae/enzimologia , Fungos/classificação , Hexosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Oligossacarídeos/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...