Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083151

RESUMO

Accurate lesion classification as benign or malignant in breast ultrasound (BUS) images is a critical task that requires experienced radiologists and has many challenges, such as poor image quality, artifacts, and high lesion variability. Thus, automatic lesion classification may aid professionals in breast cancer diagnosis. In this scope, computer-aided diagnosis systems have been proposed to assist in medical image interpretation, outperforming the intra and inter-observer variability. Recently, such systems using convolutional neural networks have demonstrated impressive results in medical image classification tasks. However, the lack of public benchmarks and a standardized evaluation method hampers the performance comparison of networks. This work is a benchmark for lesion classification in BUS images comparing six state-of-the-art networks: GoogLeNet, InceptionV3, ResNet, DenseNet, MobileNetV2, and EfficientNet. For each network, five input data variations that include segmentation information were tested to compare their impact on the final performance. The methods were trained on a multi-center BUS dataset (BUSI and UDIAT) and evaluated using the following metrics: precision, sensitivity, F1-score, accuracy, and area under the curve (AUC). Overall, the lesion with a thin border of background provides the best performance. For this input data, EfficientNet obtained the best results: an accuracy of 97.65% and an AUC of 96.30%.Clinical Relevance- This study showed the potential of deep neural networks to be used in clinical practice for breast lesion classification, also suggesting the best model choices.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Feminino , Humanos , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Redes Neurais de Computação , Ultrassonografia
2.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850436

RESUMO

Breast cancer is the most prevalent cancer in the world and the fifth-leading cause of cancer-related death. Treatment is effective in the early stages. Thus, a need to screen considerable portions of the population is crucial. When the screening procedure uncovers a suspect lesion, a biopsy is performed to assess its potential for malignancy. This procedure is usually performed using real-time Ultrasound (US) imaging. This work proposes a visualization system for US breast biopsy. It consists of an application running on AR glasses that interact with a computer application. The AR glasses track the position of QR codes mounted on an US probe and a biopsy needle. US images are shown in the user's field of view with enhanced lesion visualization and needle trajectory. To validate the system, latency of the transmission of US images was evaluated. Usability assessment compared our proposed prototype with a traditional approach with different users. It showed that needle alignment was more precise, with 92.67 ± 2.32° in our prototype versus 89.99 ± 37.49° in a traditional system. The users also reached the lesion more accurately. Overall, the proposed solution presents promising results, and the use of AR glasses as a tracking and visualization device exhibited good performance.


Assuntos
Realidade Aumentada , Feminino , Humanos , Interface Usuário-Computador , Ultrassonografia Mamária , Ultrassonografia , Biópsia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...