Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 213: 113552, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35710024

RESUMO

Worldwide, most solid waste ends its life in landfill sites, which have a significant environmental impact in several respects. In particular, rainfall over landfill sites results in the production of an aqueous leachate containing compounds having low biodegradability, high toxicity, and a high organic load. For this reason, this study aims to investigate the applicability of electro-Fenton (EF) and photoelectro-Fenton (PEF) processes as alternative for treating a local landfill effluent with high organic content (chemical oxygen demand (COD) = 2684.7 mg-O2 L -1) in a continuous-flow reactor (using, for first time, this kind of system with higher electrodes area of 35 cm2) using boron-doped diamond anode (Nb/BDD) and a carbon felt cathode (FC) electrodes. The effects of current density j (30, 60 and 90 mA cm-2) and UV radiation wavelength (UVA and UVC) were studied to evaluate the treatment efficiency as well as the energy consumption. Results clearly showed that, the best efficiencies removing organic matter, in terms of COD, were about 66%, 68% and 89% with an energy consumption of only 19.41, 17.61 and 17.59 kWh kg COD-1 for EF, PEF-UVA and PEF-UVC respectively, at 90 mA cm-2 after 4 h of operation. The treatment of this kind of effluent produced organic and inorganic by-products, the acetic and formic acids as well as NO2-, NO3-, and NH4+, being assessed their concentrations.


Assuntos
Poluentes Químicos da Água , Diamante , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Poluentes Químicos da Água/química
2.
Materials (Basel) ; 14(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34501080

RESUMO

Hydroxychloroquine (HCQ), a derivative of 4-aminoquinolone, is prescribed as an antimalarial prevention drug and to treat diseases such as rheumatoid arthritis, and systemic lupus erythematosus. Recently, Coronavirus (COVID-19) treatment was authorized by national and international medical organizations by chloroquine and hydroxychloroquine in certain hospitalized patients. However, it is considered as an unproven hypothesis for treating COVID-19 which even itself must be investigated. Consequently, the high risk of natural water contamination due to the large production and utilization of HCQ is a key issue to overcome urgently. In fact, in Brazil, the COVID-19 kit (hydroxychloroquine and/or ivermectin) has been indicated as pre-treatment, and consequently, several people have used these drugs, for longer periods, converting them in emerging water pollutants when these are excreted and released to aquatic environments. For this reason, the development of tools for monitoring HCQ concentration in water and the treatment of polluted effluents is needed to minimize its hazardous effects. Then, in this study, an electrochemical measuring device for its environmental application on HCQ control was developed. A raw cork-graphite electrochemical sensor was prepared and a simple differential pulse voltammetric (DPV) method was used for the quantitative determination of HCQ. Results indicated that the electrochemical device exhibited a clear current response, allowing one to quantify the analyte in the 5-65 µM range. The effectiveness of the electrochemical sensor was tested in different water matrices (in synthetic and real) and lower HCQ concentrations were detected. When comparing electrochemical determinations and spectrophotometric measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of this sensor in different environmental applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA