Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38853855

RESUMO

Psychological states can regulate intestinal mucosal immunity by altering the gut microbiome. However, the link between the brain and microbiome composition remains elusive. We show that Brunner's glands in the duodenal submucosa couple brain activity to intestinal bacterial homeostasis. Brunner's glands mediated the enrichment of gut probiotic species in response to stimulation of abdominal vagal fibers. Cell-specific ablation of the glands triggered transmissible dysbiosis associated with an immunodeficiency syndrome that led to mortality upon gut infection with pathogens. The syndrome could be largely prevented by oral or intra-intestinal administration of probiotics. In the forebrain, we identified a vagally-mediated, polysynaptic circuit connecting the glands of Brunner to the central nucleus of the amygdala. Intra-vital imaging revealed that excitation of central amygdala neurons activated Brunner's glands and promoted the growth of probiotic populations. Our findings unveil a vagal-glandular neuroimmune circuitry that may be targeted for the modulation of the gut microbiome. The glands of Brunner may be the critical cells that regulate the levels of Lactobacilli species in the intestine.

2.
Am J Clin Nutr ; 118(1): 314-328, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149092

RESUMO

Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.


Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Humanos , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Obesidade/terapia , Apetite/fisiologia , Peso Corporal
3.
Cell Rep ; 42(3): 112190, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857179

RESUMO

Although the consumption of carbohydrates is needed for survival, their potent reinforcing properties drive obesity worldwide. In turn, sugar overconsumption reveals a major role for brain reward systems in regulating sugar intake. However, it remains elusive how different cell types within the reward circuitries control the initiation and termination of sugary meals. Here, we identified the distinct nucleus accumbens cell types that mediate the chemosensory versus postprandial properties of sweet sugars. Specifically, D1 neurons enhance sugar intake via specialized connections to taste ganglia, whereas D2 neurons mediate the termination of sugary meals via anatomical connections to circuits involved in appetite suppression. Consistently, D2, but not D1, neurons partially mediate the satiating effects of glucagon-like peptide 1 (GLP-1) agonists. Thus, these nucleus accumbens cell types function as a behavioral switch, enabling positive versus negative control over sugar intake. Our study contributes to unveiling the cellular and circuit substrates of sugar overconsumption.


Assuntos
Neurônios , Núcleo Accumbens , Camundongos , Animais , Núcleo Accumbens/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Açúcares/metabolismo , Receptores de Dopamina D1/metabolismo
4.
Cell ; 185(14): 2478-2494.e28, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35662413

RESUMO

Glucagon-like peptide-1 (GLP-1) is a signal peptide released from enteroendocrine cells of the lower intestine. GLP-1 exerts anorectic and antimotility actions that protect the body against nutrient malabsorption. However, little is known about how intestinal GLP-1 affects distant organs despite rapid enzymatic inactivation. We show that intestinal GLP-1 inhibits gastric emptying and eating via intestinofugal neurons, a subclass of myenteric neurons that project to abdominal sympathetic ganglia. Remarkably, cell-specific ablation of intestinofugal neurons eliminated intestinal GLP-1 effects, and their chemical activation functioned as a GLP-1 mimetic. GLP-1 sensing by intestinofugal neurons then engaged a sympatho-gastro-spinal-reticular-hypothalamic pathway that links abnormal stomach distension to craniofacial programs for food rejection. Within this pathway, cell-specific activation of discrete neuronal populations caused systemic GLP-1-like effects. These molecularly identified, delimited enteric circuits may be targeted to ameliorate the abdominal bloating and loss of appetite typical of gastric motility disorders.


Assuntos
Apetite , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Íleo , Neurônios , Estômago , Abdome , Animais , Comunicação Celular , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Íleo/inervação , Íleo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Estômago/inervação , Estômago/metabolismo
5.
STAR Protoc ; 2(2): 100474, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33997807

RESUMO

The jugular-nodose ganglia contain the sensory peripheral neurons of the vagus nerve, linking visceral organs to the medulla oblongata. Accessing these ganglia in smaller animals without damaging the vascular and neural structures may be challenging, as ganglionic fibers imbed deeply into the carotid sheath, and vagal parasympathetic fibers cross through the interior of the ganglia. We describe a practical protocol for locating and accessing the mouse jugular-nodose ganglia in vivo, including instructions for intraganglionic injections and postperfusion dissection. For complete details on the use and execution of this protocol, please refer to Han et al. (2018).


Assuntos
Dissecação/métodos , Gânglio Nodoso , Animais , Feminino , Forâmen Jugular/inervação , Masculino , Camundongos , Gânglio Nodoso/anatomia & histologia , Gânglio Nodoso/cirurgia
6.
Neuron ; 109(3): 391-393, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33539771

RESUMO

Area postrema in brainstem has long been known to trigger emesis by detecting blood-borne toxins and pathogens. In this issue, Zhang and colleagues provide a single-cell molecular atlas of this region, opening new possibilities for harnessing its neurons in vivo.


Assuntos
Área Postrema , Náusea , Tronco Encefálico , Humanos , Neurônios , Vômito
7.
Annu Rev Psychol ; 71: 139-164, 2020 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-31561741

RESUMO

The conscious perception of the hedonic sensory properties of caloric foods is commonly believed to guide our dietary choices. Current and traditional models implicate the consciously perceived hedonic qualities of food as driving overeating, whereas subliminal signals arising from the gut would curb our uncontrolled desire for calories. Here we review recent animal and human studies that support a markedly different model for food reward. These findings reveal in particular the existence of subcortical body-to-brain neural pathways linking gastrointestinal nutrient sensors to the brain's reward regions. Unexpectedly, consciously perceptible hedonic qualities appear to play a less relevant, and mostly transient, role in food reinforcement. In this model, gut-brain reward pathways bypass cranial taste and aroma sensory receptors and the cortical networks that give rise to flavor perception. They instead reinforce behaviors independently of the cognitive processes that support overt insights into the nature of our dietary decisions.


Assuntos
Encéfalo , Comportamento Alimentar , Alimentos , Trato Gastrointestinal , Recompensa , Animais , Humanos
8.
Appetite ; 139: 145-151, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31029689

RESUMO

BACKGROUND AND AIM: In most species, including humans, food preference is primarily controlled by nutrient value. However, the gut-brain pathways involved in preference learning remain elusive. The aim of the present study, performed in C57BL6/J mice, was to characterize the roles in nutrient preference of two critical elements of gut-brain pathways, i.e. the duodenum and vagal gut innervation. METHODS: Adult wild-type C57BL6/J mice from a normal-weight cohort sustained one of the following three procedures: duodenal-jejunal bypass intestinal rerouting (DJB), total subdiaphragmatic vagotomy (SDV), or sham surgery. Mice were assessed in short-term two-bottle preference tests before and after 24 h s exposures to solutions containing one of glutamate, lipids, sodium, or glucose. RESULTS: DJB and SDV interfered in preference formation in a nutrient-specific manner: whereas normal preference learning for lipids and glutamate was disrupted by both DJB and SDV, these interventions did not alter the formation of preferences for glucose. Interestingly, sodium preferences were abrogated by DJB but not by SDV. CONCLUSIONS: Different macronutrients make use of distinct gut-brain pathways to influence food preferences, thereby mirroring nutrient-specific processes of food digestion. Specifically, whereas both vagal innervation and duodenal sensing appear critical for generating responses to fats and protein, glucose preferences recruit post-duodenal, vagal-independent pathways in pair with the control of glucose homeostasis. Overall, our data suggest that the physiological processes involved in digesting and absorbing fats, amino acids, and glucose overlap with those mediating learned preferences for each of these nutrients.


Assuntos
Encéfalo/fisiologia , Duodeno/inervação , Preferências Alimentares/fisiologia , Nutrientes/fisiologia , Nervo Vago/fisiologia , Animais , Digestão/fisiologia , Duodeno/cirurgia , Derivação Gástrica , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Vago/cirurgia
9.
Front Integr Neurosci ; 12: 57, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519164

RESUMO

In most species, including humans, food preference is primarily controlled by nutrient value. In particular, glucose-containing sugars exert exquisitely strong effects on food choice via gut-generated signals. However, the identity of the visceral signals underlying glucose's rewarding effects remains uncertain. In particular, it is unknown whether sugar metabolism mediates the formation of preferences for glucose-containing sugars. Using the mouse as a model organism, we made use of a combination of conditioning schedules, gastrointestinal nutrient administration, and chromatographic/electrochemical methods to assess the behavioral and neural effects of activating the gut with either metabolizable glucose or a non-metabolizable glucose analog. We show that mice display much superior preferences for flavors associated with intra-gastric infusions of glucose compared to flavors associated with intra-gastric infusions of the non-metabolizable glucose analog α-methyl-D-glucopyranoside ("MDG," an activator of intestinal sodium/glucose co-transporters). These effects were unaffected by surgical bypassing of the duodenum, suggesting glucose-specific post-absorptive sensing mechanisms. Consistently, intra-portal infusions of glucose, but not of MDG, induced significant rises in dopamine (DA) levels within brain reward circuits. Our data reveal that the unmatched rewarding effects of glucose-containing sugars cannot be accounted for by metabolism-independent activation of sodium/glucose cotransporters; rather, they point to glucose metabolism as the physiological mechanism underlying the potent reward value of sugar-sweetened flavored beverages. In particular, no circulating "gut factors" need to be invoked to explain the reward value of ingested glucose. Thus, instead of circulating gut hormones, portal-mesenteric sensing of glucose emerges as the preferential physiological pathway for sugar reward.

11.
Cell ; 175(3): 665-678.e23, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30245012

RESUMO

The gut is now recognized as a major regulator of motivational and emotional states. However, the relevant gut-brain neuronal circuitry remains unknown. We show that optical activation of gut-innervating vagal sensory neurons recapitulates the hallmark effects of stimulating brain reward neurons. Specifically, right, but not left, vagal sensory ganglion activation sustained self-stimulation behavior, conditioned both flavor and place preferences, and induced dopamine release from Substantia nigra. Cell-specific transneuronal tracing revealed asymmetric ascending pathways of vagal origin throughout the CNS. In particular, transneuronal labeling identified the glutamatergic neurons of the dorsolateral parabrachial region as the obligatory relay linking the right vagal sensory ganglion to dopamine cells in Substantia nigra. Consistently, optical activation of parabrachio-nigral projections replicated the rewarding effects of right vagus excitation. Our findings establish the vagal gut-to-brain axis as an integral component of the neuronal reward pathway. They also suggest novel vagal stimulation approaches to affective disorders.


Assuntos
Intestinos/fisiologia , Recompensa , Substância Negra/fisiologia , Nervo Vago/fisiologia , Vias Aferentes/metabolismo , Vias Aferentes/fisiologia , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Ácido Glutâmico/metabolismo , Intestinos/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
12.
Cell ; 168(1-2): 311-324.e18, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086095

RESUMO

Superior predatory skills led to the evolutionary triumph of jawed vertebrates. However, the mechanisms by which the vertebrate brain controls predation remain largely unknown. Here, we reveal a critical role for the central nucleus of the amygdala in predatory hunting. Both optogenetic and chemogenetic stimulation of central amygdala of mice elicited predatory-like attacks upon both insect and artificial prey. Coordinated control of cervical and mandibular musculatures, which is necessary for accurately positioning lethal bites on prey, was mediated by a central amygdala projection to the reticular formation in the brainstem. In contrast, prey pursuit was mediated by projections to the midbrain periaqueductal gray matter. Targeted lesions to these two pathways separately disrupted biting attacks upon prey versus the initiation of prey pursuit. Our findings delineate a neural network that integrates distinct behavioral modules and suggest that central amygdala neurons instruct predatory hunting across jawed vertebrates.


Assuntos
Núcleo Central da Amígdala/fisiologia , Comportamento Predatório , Animais , Ansiedade/metabolismo , Núcleo Central da Amígdala/anatomia & histologia , Eletromiografia , Interneurônios/metabolismo , Mandíbula/anatomia & histologia , Mandíbula/inervação , Mandíbula/fisiologia , Camundongos , Pescoço/anatomia & histologia , Pescoço/inervação , Pescoço/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia
13.
Cell Metab ; 25(2): 335-344, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28065827

RESUMO

Bariatric surgery remains the single most effective long-term treatment modality for morbid obesity, achieved mainly by lowering caloric intake through as yet ill-defined mechanisms. Here we show in rats that Roux-en-Y gastric bypass (RYGB)-like rerouting of ingested fat mobilizes lower small intestine production of the fat-satiety molecule oleoylethanolamide (OEA). This was associated with vagus nerve-driven increases in dorsal striatal dopamine release. We also demonstrate that RYGB upregulates striatal dopamine 1 receptor (D1R) expression specifically under high-fat diet feeding conditions. Mechanistically, interfering with local OEA, vagal, and dorsal striatal D1R signaling negated the beneficial effects of RYGB on fat intake and preferences. These findings delineate a molecular/systems pathway through which bariatric surgery improves feeding behavior and may aid in the development of novel weight loss strategies that similarly modify brain reward circuits compromised in obesity.


Assuntos
Apetite/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Derivação Gástrica , Trato Gastrointestinal/metabolismo , Neostriado/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , PPAR alfa/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Dopamina/metabolismo , Endocanabinoides/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Camundongos Obesos , Modelos Biológicos , Neostriado/efeitos dos fármacos , Ácidos Oleicos/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo , Redução de Peso/efeitos dos fármacos
14.
eNeuro ; 3(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257625

RESUMO

The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully active vitamin D3 (calcitriol, 10 µg/kg, i.p.) were performed. Nondeficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol.


Assuntos
Anfetamina/farmacologia , Calcitriol/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Colecalciferol/deficiência , Colecalciferol/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Obesidade/metabolismo , Obesidade/patologia
15.
Physiol Behav ; 164(Pt B): 473-477, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27126968

RESUMO

Sugar's potent reinforcing properties arise from the complex interplay between gustatory and nutritive signals. This commentary addresses a unique organizational aspect of the neuronal circuitry that mediates sugar reinforcement in both Drosophila and rodents. Specifically, current evidence supports a general circuit model where separate populations of dopaminergic neurons encode the gustatory and nutritive values of sugar. This arrangement allows animals to prioritize energy seeking over taste quality, and implies that specialized subpopulations of dopamine-containing neurons form a class of evolutionary conserved chemo- and nutrient-sensors.


Assuntos
Sacarose Alimentar , Dopamina/metabolismo , Reforço Psicológico , Edulcorantes , Percepção Gustatória/fisiologia , Animais , Encéfalo/metabolismo , Sacarose Alimentar/química , Humanos , Edulcorantes/química
16.
Neuroimage ; 128: 273-283, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724781

RESUMO

Variations in brain responses to sensory stimuli are typically considered to lack information content and treated as "noise". Alternatively, variable response patterns may reflect the adjustment of biological parameters to external factors. We used functional magnetic resonance imaging in healthy non-dieting individuals to test whether intra-individual variation in brain response to the receipt of milkshake is associated with a range of behavioral and metabolic parameters. We found that, following a meal, high variability in nucleus accumbens (NAcc) response to milkshake is associated with higher body mass index, greater dietary disinhibition, more variable ad libitum food consumption, faster increases in plasma insulin, faster decreases in plasma glucose, and greater weight loss over 1year. Our results thus uncover a series of physiological parameters encrypted as variable responses in NAcc to food stimuli. They also suggest that variations in striatal activity regulate the activation of behavioral and metabolic responses to food availability.


Assuntos
Comportamento Alimentar/fisiologia , Núcleo Accumbens/fisiologia , Adolescente , Adulto , Índice de Massa Corporal , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
17.
Nat Neurosci ; 19(3): 465-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26807950

RESUMO

Sugar exerts its potent reinforcing effects via both gustatory and post-ingestive pathways. It is, however, unknown whether sweetness and nutritional signals engage segregated brain networks to motivate ingestion. We found in mice that separate basal ganglia circuitries mediated the hedonic and nutritional actions of sugar. During sugar intake, suppressing hedonic value inhibited dopamine release in ventral, but not dorsal, striatum, whereas suppressing nutritional value inhibited dopamine release in dorsal, but not ventral, striatum. Consistently, cell-specific ablation of dopamine-excitable cells in dorsal, but not ventral, striatum inhibited sugar's ability to drive the ingestion of unpalatable solutions. Conversely, optogenetic stimulation of dopamine-excitable cells in dorsal, but not ventral, striatum substituted for sugar in its ability to drive the ingestion of unpalatable solutions. Our data indicate that sugar recruits a distributed dopamine-excitable striatal circuitry that acts to prioritize energy-seeking over taste quality.


Assuntos
Corpo Estriado/fisiologia , Glucose/farmacologia , Valor Nutritivo/fisiologia , Prazer/fisiologia , Percepção Gustatória/fisiologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Camundongos , Optogenética , Prazer/efeitos dos fármacos , Sacarose/análogos & derivados , Sacarose/farmacologia , Percepção Gustatória/efeitos dos fármacos
18.
Cell Metab ; 23(1): 103-12, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26698915

RESUMO

Reductions in calorie intake contribute significantly to the positive outcome of bariatric surgeries. However, the physiological mechanisms linking the rerouting of the gastrointestinal tract to reductions in sugar cravings remain uncertain. We show that a duodenal-jejunal bypass (DJB) intervention inhibits maladaptive sweet appetite by acting on dopamine-responsive striatal circuitries. DJB disrupted the ability of recurrent sugar exposure to promote sweet appetite in sated animals, thereby revealing a link between recurrent duodenal sugar influx and maladaptive sweet intake. Unlike ingestion of a low-calorie sweetener, ingestion of sugar was associated with significant dopamine effluxes in the dorsal striatum, with glucose infusions into the duodenum inducing greater striatal dopamine release than equivalent jejunal infusions. Consistently, optogenetic activation of dopamine-excitable cells of the dorsal striatum was sufficient to restore maladaptive sweet appetite in sated DJB mice. Our findings point to a causal link between striatal dopamine signaling and the outcomes of bariatric interventions.


Assuntos
Regulação do Apetite , Neurônios Dopaminérgicos/fisiologia , Potenciais de Ação , Animais , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/metabolismo , Dopamina/fisiologia , Duodeno/metabolismo , Duodeno/cirurgia , Ingestão de Energia , Derivação Gástrica , Glucose/administração & dosagem , Glucose/metabolismo , Jejuno/metabolismo , Jejuno/cirurgia , Masculino , Camundongos Endogâmicos C57BL , Neostriado/citologia
19.
Physiol Behav ; 155: 131-40, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26656766

RESUMO

Compromised dopamine signaling in the striatum has been associated with the expression of impulsive behaviors in addiction, obesity and alcoholism. In rodents, intragastric infusion of the fatty acid amide oleoylethanolamide increases striatal extracellular dopamine levels via vagal afferent signaling. Here we tested whether supplementation with PhosphoLean™, a dietary supplement that contains the precursor of the fatty acid amide oleoylethanolamide (N-oleyl-phosphatidylethanolamine), would reduce impulsive responding and alcohol use in heavy drinking young adults. Twenty-two individuals were assigned to a three-week supplementation regimen with PhosphoLean™ or placebo. Impulsivity was assessed with self-report questionnaires and behavioral tasks pre- and post-supplementation. Although self-report measures of impulsivity did not change, supplementation with PhosphoLean™, but not placebo, significantly reduced false alarm rate on a Go/No-Go task. In addition, an association was found between improved sensitivity on the Go/No-Go task and reduced alcohol intake. These findings provide preliminary evidence that promoting fatty acid derived gut-brain dopamine communication may have therapeutic potential for reducing impulsivity in heavy drinkers.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Transtornos Relacionados ao Uso de Álcool/dietoterapia , Suplementos Nutricionais , Endocanabinoides/administração & dosagem , Comportamento Impulsivo/fisiologia , Ácidos Oleicos/administração & dosagem , Adulto , Consumo de Bebidas Alcoólicas/psicologia , Transtornos Relacionados ao Uso de Álcool/fisiopatologia , Transtornos Relacionados ao Uso de Álcool/psicologia , Método Duplo-Cego , Feminino , Humanos , Inibição Psicológica , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Autorrelato , Resultado do Tratamento , Adulto Jovem
20.
J Neurosci ; 35(20): 7964-76, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25995480

RESUMO

In rodents, food-predictive cues elicit eating in the absence of hunger (Weingarten, 1983). This behavior is disrupted by the disconnection of amygdala pathways to the lateral hypothalamus (Petrovich et al., 2002). Whether this circuit contributes to long-term weight gain is unknown. Using fMRI in 32 healthy individuals, we demonstrate here that the amygdala response to the taste of a milkshake when sated but not hungry positively predicts weight change. This effect is independent of sex, initial BMI, and total circulating ghrelin levels, but it is only present in individuals who do not carry a copy of the A1 allele of the Taq1A polymorphism. In contrast, A1 allele carriers, who have decreased D2 receptor density (Blum et al., 1996), show a positive association between caudate response and weight change. Regardless of genotype, however, dynamic causal modeling supports unidirectional gustatory input from basolateral amygdala (BLA) to hypothalamus in sated subjects. This finding suggests that, as in rodents, external cues gain access to the homeostatic control circuits of the human hypothalamus via the amygdala. In contrast, during hunger, gustatory inputs enter the hypothalamus and drive bidirectional connectivity with the amygdala. These findings implicate the BLA-hypothalamic circuit in long-term weight change related to nonhomeostatic eating and provide compelling evidence that distinct brain mechanisms confer susceptibility to weight gain depending upon individual differences in dopamine signaling.


Assuntos
Tonsila do Cerebelo/fisiologia , Sinais (Psicologia) , Fome , Saciação , Aumento de Peso/fisiologia , Adolescente , Adulto , Alelos , Feminino , Humanos , Hipotálamo/fisiologia , Masculino , Polimorfismo Genético , Receptores de Dopamina D2/genética , Aumento de Peso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...