Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 95: 462-476, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964434

RESUMO

Physically active individuals are less likely to develop chronic pain, and physical exercise is an established strategy to control inflammatory diseases. Here, we hypothesized that 1) peripheral pro-inflammatory macrophages phenotype contribute to predisposition of the musculoskeletal to chronic pain, and that 2) activation of PPARγ receptors, modulation of macrophage phenotypes and cytokines through physical exercise would prevent persistent muscle pain. We tested these hypotheses using swimming exercise, pharmacological and immunochemical techniques in a rodent model of persistent muscle hyperalgesia. Swimming prevented the persistent mechanical muscle hyperalgesia most likely through activation of PPARγ receptors, as well as activation of PPARγ receptors by 15d-PGJ2 and depletion of muscle macrophages in sedentary animals. Acute and persistent muscle hyperalgesia were characterized by an increase in pro-inflammatory macrophages phenotype, and swimming and the 15d-PGJ2 prevented this increase and increased anti-inflammatory macrophages phenotype. Finally, IL-1ß concentration in muscle increased in the acute phase, which was also prevented by PPARγ receptors activation through swimming. Besides, swimming increased muscle concentration of IL-10 in both acute and chronic phases, but only in the persistent phase through PPARγ receptors. Our findings suggest physical exercise activates PPARγ receptors and increases anti-inflammatory responses in the muscle tissue by modulating macrophages phenotypes and cytokines, thereby preventing the establishment of persistent muscle hyperalgesia. These results further highlight the potential of physical exercise to prevent chronic muscle pain.


Assuntos
Hiperalgesia , Macrófagos , Músculos/metabolismo , PPAR gama , Condicionamento Físico Animal , Animais , Citocinas , Masculino , Camundongos , Fenótipo , Prostaglandina D2/análogos & derivados
2.
Purinergic Signal ; 16(3): 403-414, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32766958

RESUMO

This study aimed to evaluate whether the development and/or maintenance of chronic-latent muscle hyperalgesia is modulated by P2X3 receptors. We also evaluate the expression of P2X3 receptors and PKCε of dorsal root ganglions during these processes. A mouse model of chronic-latent muscle hyperalgesia, induced by carrageenan and evidenced by PGE2, was used. Mechanical muscle hyperalgesia was measured by Randall-Selitto analgesimeter. The involvement of P2X3 receptors was analyzed by using the selective P2X3 receptors antagonist A-317491 by intramuscular or intrathecal injections. Expression of P2X3 and PKCε in dorsal root ganglion (L4-S1) were evaluated by Western blotting. Intrathecal blockade of P2X3 receptors previously to carrageenan prevented the development and maintenance of acute and chronic-latent muscle hyperalgesia, while intramuscular blockade of P2X3 receptors previously to carrageenan only reduced the acute muscle hyperalgesia and had no effect on chronic-latent muscle hyperalgesia. Intrathecal, but not intramuscular, blockade of P2X3 receptors immediately before PGE2, in animals previously sensitized by carrageenan, reversed the chronic-latent muscle hyperalgesia. There was an increase in total and phosphorylated PKCε 48 h after the beginning of acute muscle hyperalgesia, and in P2X3 receptors at the period of chronic muscle hyperalgesia. P2X3 receptors expressed on spinal cord dorsal horn contribute to transition from acute to chronic muscle pain. We also suggest an interaction of PKCε and P2X3 receptors in this process. Therefore, we point out P2X3 receptors of the spinal cord dorsal horn as a pharmacological target to prevent the development or reverse the chronic muscle pain conditions.


Assuntos
Dor Aguda/metabolismo , Dor Crônica/metabolismo , Músculo Esquelético/metabolismo , Mialgia/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animais , Progressão da Doença , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Fenóis/farmacologia , Compostos Policíclicos/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia
3.
Neuroscience ; 427: 64-74, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31887360

RESUMO

Regular physical exercise has been described as a good strategy for prevention or reduction of musculoskeletal pain. The Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) has been investigated as a promising target for the control of inflammatory pain. Therefore, the aim of this study was to evaluate whether activation of PPARγ receptors is involved in the reduction of acute muscle pain by chronic exercise and, in this case, whether this process is modulated by inflammatory cytokines. To this end, Wistar rats were submitted to swimming physical training for a period of 10 weeks, 5 days per week, 40 min/day, in an intensity of 4% of the body mass. Muscle hyperalgesia was measured by Randall Selitto test and pro-inflammatory cytokines were quantified by ELISA. The results showed that swimming physical training prevented the onset of acute mechanical muscle hyperalgesia and the increase in muscle levels of Cytokine-induced neutrophil chemoattractant 1 (CINC-1) induced by carrageenan into gastrocnemius muscle. In addition, local pre-treatment with the selective PPARγ receptors antagonist GW9662 reversed the mechanical muscle hypoalgesia and the modulation of CINC-1 levels induced by swimming physical training. These data suggest that swimming physical training prevented the onset of acute mechanical muscle hyperalgesia by a mechanism dependent of PPARγ receptors, which seems to contribute to this process by modulation of the pro-inflammatory cytokine CINC-1, and highlight the potential of PPARγ receptors as a target to control musculoskeletal pain and to potentiate the reduction of musculoskeletal pain induced by exercise.


Assuntos
Quimiocina CXCL1/metabolismo , Hiperalgesia/prevenção & controle , Mialgia/prevenção & controle , PPAR gama/metabolismo , Natação/fisiologia , Anilidas/farmacologia , Animais , Citocinas/metabolismo , Masculino , Mialgia/induzido quimicamente , Mialgia/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...