Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079585

RESUMO

Plants interact with diverse microbial communities and share complex relationships with each other. The intimate association between microbes and their host mutually benefit each other and provide stability against various biotic and abiotic stresses to plants. Endophytes are heterogeneous groups of microbes that live inside the host tissue without showing any apparent sign of infection. However, their functional attributes such as nutrient acquisition, phytohormone modulation, synthesis of bioactive compounds, and antioxidant enzymes of endophytes are similar to the other rhizospheric microorganisms. Nevertheless, their higher colonization efficacy and stability against abiotic stress make them superior to other microorganisms. In recent studies, the potential role of endophytes in bioprospecting has been broadly reported. However, the molecular aspect of host-endophyte interactions is still unclear. In this study, we have briefly discussed the endophyte biology, colonization efficacy and diversity pattern of endophytes. In addition, it also summarizes the molecular aspect of plant-endophyte interaction in biotic stress management.

2.
Braz J Microbiol ; 45(3): 995-1005, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25477936

RESUMO

Sugarcane (Saccharum spp.) is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF) and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcane varieties, under two harvest management systems (no-burning and pre-harvest burning). Soil and root samples were collected in the field after the first harvest of sugarcane varieties SP813250, SP801842, and RB72454, and AMF species were identified based on spore morphology. Diversity indices were determined based on spore populations and root colonization determined as an indicator of symbioses development. Based on the diversity indices, spore number and species occurrence in soil, no significant differences were observed among the AMF communities, regardless of harvest management type, sugarcane variety or interactions between harvest management type and sugarcane variety. However, mycorrhiza development was stimulated in sugarcane under the no-burning management system. Our data suggest that the sugarcane harvest management system may cause early changes in arbuscular mycorrhiza development.


Assuntos
Agricultura/métodos , Biodiversidade , Micorrizas/crescimento & desenvolvimento , Saccharum/microbiologia , Brasil , Micorrizas/classificação , Micorrizas/isolamento & purificação , Raízes de Plantas/microbiologia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...