Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 129: 259-269, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31247532

RESUMO

Proton-conducting porous ceramic membranes were synthesized via a polymer-derived ceramic route and probed in a microbial fuel cell (MFC). Their chemical compositions were altered by adding carbon allotropes including graphene oxide (GO) and multiwall carbon nanotubes into a polysiloxane matrix as filler materials. Physical characteristics of the synthesized membranes such as porosity, hydrophilicity, mechanical stability, ion exchange capacity, and oxygen mass transfer coefficient were determined to investigate the best membrane material for further testing in MFCs. The ion exchange capacity of the membrane increased drastically after adding 0.5 wt% of GO at an increment of 9 fold with respect to that of the non-modified ceramic membrane, while the oxygen mass transfer coefficient of the membrane decreased by 52.6%. The MFC operated with this membrane exhibited a maximum power density of 7.23 W m-3 with a coulombic efficiency of 28.8%, which was significantly higher than the value obtained using polymeric Nafion membrane. Hence, out of all membranes tested in this study the GO-modified polysiloxane based ceramic membranes are found to have a potential to replace Nafion membranes in pilot scale MFCs.


Assuntos
Fontes de Energia Bioelétrica , Cerâmica/química , Grafite/química , Membranas Artificiais , Nanotubos de Carbono/química , Siloxanas/química , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Modelos Moleculares , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA