Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 16(4): 044106, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35935121

RESUMO

Microfluidic devices are typically fabricated in an expensive, multistep process (e.g., photolithography, etching, and bonding). Additive manufacturing (AM) has emerged as a revolutionary technology for simple and inexpensive fabrication of monolithic structures-enabling microfluidic designs that are challenging, if not impossible, to make with existing fabrication techniques. Here, we introduce volumetric stereolithography (vSLA), an AM method in which polymerization is constrained to specific heights within a resin vat, allowing layer-by-layer fabrication without a moving platform. vSLA uses an existing dual-wavelength chemistry that polymerizes under blue light (λ = 458 nm) and inhibits polymerization under UV light (λ = 365 nm). We apply vSLA to fabricate microfluidic channels with different spatial and vertical geometries in less than 10 min. Channel heights ranged from 400 µm to 1 mm and could be controlled with an optical dose, which is a function of blue and UV light intensities and exposure time. Oxygen in the resin was found to significantly increase the amount of dose required for curing (i.e., polymerization to a gelled state), and we recommend that an inert vSLA system is used for rapid and reproducible microfluidic fabrication. Furthermore, we recommend polymerizing far beyond the gel point to form more rigid structures that are less susceptible to damage during post-processing, which can be done by simultaneously increasing the blue and UV light absorbance of the resin with light intensities. We believe that vSLA can simplify the fabrication of complex multilevel microfluidic devices, extending microfluidic innovation and availability to a broader community.

2.
Opt Lett ; 47(5): 1279-1282, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230346

RESUMO

Volumetric additive manufacturing (VAM) enables rapid printing into a wide range of materials, offering significant advantages over other printing technologies, with a lack of inherent layering of particular note. However, VAM suffers from striations, similar in appearance to layers, and similarly limiting applications due to mechanical and refractive index inhomogeneity, surface roughness, etc. We hypothesize that these striations are caused by a self-written waveguide effect, driven by the gelation material nonlinearity upon which VAM relies, and that they are not a direct recording of non-uniform patterning beams. We demonstrate a simple and effective method of mitigating striations via a uniform optical exposure added to the end of any VAM printing process. We show this step to additionally shorten the period from initial gelation to print completion, mitigating the problem of partially gelled parts sinking before print completion, and expanding the range of resins printable in any VAM printer.

3.
Lab Chip ; 20(14): 2510-2519, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32530023

RESUMO

Characterizing and isolating microparticles of different sizes is often desirable and essential for biological analysis. In this work, we present a new and straightforward technique to fabricate variable-height glass microchannels for size-based passive trapping of microparticles. The fabrication technique uses controlled non-uniform exposure to an etchant solution to create channels of arbitrary height that vary in a predetermined way from the inlet to the outlet. Channels that vary from 1 µm to over 20 µm in height along a length of approximately 6 cm are shown to effectively and reproducibly separate particles by size including particles whose diameters differ by less than 100 nm when the standard deviation in size is less than 0.66 µm. Additionally, healthy red blood cells and red blood cells chemically modified with glutaraldehyde to reduce their deformability were introduced into different channels. The healthy cells can flow into shallower heights, while the less deformable ones are trapped at deeper heights. The macroscopic visualization of microparticle separation in these devices in addition to their ease of use, simple fabrication, low cost, and small size suggest their viability in the final detection step of many bead-based assay protocols.


Assuntos
Micropartículas Derivadas de Células , Técnicas Analíticas Microfluídicas , Bioensaio , Eritrócitos
4.
Sci Adv ; 5(1): eaau8723, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30746465

RESUMO

Contemporary, layer-wise additive manufacturing approaches afford sluggish object fabrication rates and often yield parts with ridged surfaces; in contrast, continuous stereolithographic printing overcomes the layer-wise operation of conventional devices, greatly increasing achievable print speeds and generating objects with smooth surfaces. We demonstrate a novel method for rapid and continuous stereolithographic additive manufacturing by using two-color irradiation of (meth)acrylate resin formulations containing complementary photoinitiator and photoinhibitor species. In this approach, photopatterned polymerization inhibition volumes generated by irradiation at one wavelength spatially confine the region photopolymerized by a second concurrent irradiation wavelength. Moreover, the inhibition volumes created using this method enable localized control of the polymerized region thickness to effect single-exposure, topographical patterning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...