Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38775637

RESUMO

OBJECTIVES: Autoreactive memory B cells contribute to chronic and progressive courses in autoimmune diseases like systemic lupus erythematosus (SLE). The efficacy of belimumab (BEL), the first approved biologic treatment for SLE and lupus nephritis (LN), is generally attributed to depletion of activated naïve B cells and inhibition of B cell activation. BEL's effect on memory B cells (MBCs) is currently unexplained. We performed an in-depth cellular and transcriptomic analysis of BEL's impact on the blood MBC compartment in patients with SLE. METHODS: A retrospective meta-analysis was conducted, pooling flow cytometry data from four randomized trials involving 1245 patients with SLE treated with intravenous BEL or placebo. Then, extensive MBC phenotyping was performed using high-sensitivity flow cytometry in patients with mild/moderate SLE and severe SLE/LN treated with subcutaneous BEL. Finally, transcriptomic characterization of surging MBCs was performed by single-cell RNA sequencing. RESULTS: In BEL-treated patients, a significant increase in circulating MBCs, in a broad range of MBC subsets, was established at week 2, gradually returning to baseline by week 52. The increase was most prominent in patients with higher SLE disease activity, serologically active patients, and patients aged ≤18 years. MBCs had a non-proliferating phenotype with a prominent decrease in activation status and downregulation of numerous migration genes. CONCLUSION: Upon BEL initiation, an increase of MBCs was firmly established. In the small cohort investigated, circulating MBCs were de-activated, non-proliferative, and demonstrated characteristics of disrupted lymphocyte trafficking, expanding on our understanding of the therapeutic mechanism of B cell-activating factor inhibition by BEL. TRIAL REGISTRATION: ClinicalTrials.gov NCT00071487, NCT00410384, NCT01632241, NCT01649765, NCT03312907, NCT03747159.

2.
Front Immunol ; 13: 935879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189252

RESUMO

Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual "expert-based") gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings.


Assuntos
Anticorpos , Células Mieloides , Anticoagulantes , Citometria de Fluxo , Humanos , Imunofenotipagem , Valores de Referência
3.
Nat Immunol ; 23(1): 23-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937933

RESUMO

Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates1-6. Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c+ natural killer (NK) cells and CD4+ T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38+PD1+CD4+ T effector (Teff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127+ granulocytes and CD38+CD8+ tissue-resident memory T cells (TRM). SARS-CoV-2-specific CD8+ T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Nasofaringe/imunologia , Nariz/citologia , Mucosa Respiratória/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/patologia , Granulócitos/imunologia , Antígenos HLA-DR/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células T de Memória/imunologia , Monócitos/imunologia , Nasofaringe/citologia , Nasofaringe/virologia , Neutrófilos/imunologia , Nariz/imunologia , Nariz/virologia , Estudos Prospectivos , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia
4.
J Immunother Cancer ; 8(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32169872

RESUMO

PURPOSE: Patients with cancer receiving tumor-reactive humanized monoclonal antibody (mAb) therapy can develop a human antihuman antibody (HAHA) response against the therapeutic mAb. We evaluated for HAHA in patients with neuroblastoma treated in a phase I study of humanized anti-GD2 mAb (immunoglobulin (Ig)G1 isotype), hu14.18K322A (NCT00743496). The pretreatment sera (collected prior to mAb treatment) from 9 of 38 patients contained antitherapeutic antibodies, even though they had no prior mAb exposure. We sought to characterize these pre-existing antitherapeutic antibodies (PATA). EXPERIMENTAL DESIGN: The PATA+ pretreatment samples were characterized via ELISA; clinical associations with PATA status were evaluated. RESULTS: Pretreatment sera from eight of nine PATA+ patients also bound rituximab and demonstrated preferential ELISA reactivity against the Fc portions of hu14.18K322A and rituximab as compared with the Fab portions of these mAbs. These PATA+ sera also recognized dinutuximab (human IgG1 isotype) and mouse IgG2a isotype mAbs, but not a mouse IgG1 isotype or the fully human panitumumab (IgG2 isotype) mAb. Of the 38 treated patients, only 4 patients (all in the PATA+ cohort) demonstrated no disease progression for >2.5 years without receiving further therapy (p=0.002). CONCLUSIONS: This study demonstrates an association between clinical outcome and the presence of PATA against determinant(s) on the Fc component of the therapeutic mAb, suggesting that the PATA may be playing a role in augmenting mAb-based antitumor effects. Further analyses for the presence of PATA in a larger cohort of patients with relapsed neuroblastoma, analyses of their clinical correlates, identification of their immunological targets, and potential antitumor mechanisms are warranted.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Feminino , Humanos , Camundongos , Recidiva Local de Neoplasia , Neuroblastoma , Resultado do Tratamento
5.
Cancer Res ; 79(3): 611-624, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30545920

RESUMO

Neuroblastoma is the most common childhood solid tumor, yet the prognosis for high-risk disease remains poor. We demonstrate here that arginase 2 (ARG2) drives neuroblastoma cell proliferation via regulation of arginine metabolism. Targeting arginine metabolism, either by blocking cationic amino acid transporter 1 (CAT-1)-dependent arginine uptake in vitro or therapeutic depletion of arginine by pegylated recombinant arginase BCT-100, significantly delayed tumor development and prolonged murine survival. Tumor cells polarized infiltrating monocytes to an M1-macrophage phenotype, which released IL1ß and TNFα in a RAC-alpha serine/threonine-protein kinase (AKT)-dependent manner. IL1ß and TNFα established a feedback loop to upregulate ARG2 expression via p38 and extracellular regulated kinases 1/2 (ERK1/2) signaling in neuroblastoma and neural crest-derived cells. Proteomic analysis revealed that enrichment of IL1ß and TNFα in stage IV human tumor microenvironments was associated with a worse prognosis. These data thus describe an immune-metabolic regulatory loop between tumor cells and infiltrating myeloid cells regulating ARG2, which can be clinically exploited. SIGNIFICANCE: These findings illustrate that cross-talk between myeloid cells and tumor cells creates a metabolic regulatory loop that promotes neuroblastoma progression.


Assuntos
Arginina/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Neuroblastoma/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Arginase/metabolismo , Linhagem Celular Tumoral , Humanos , Interleucina-1beta/imunologia , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Neuroblastoma/imunologia , Neuroblastoma/patologia , Sarcoma de Ewing/imunologia , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Microambiente Tumoral , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...