Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 10: 509, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877108

RESUMO

Diabetes mellitus (DM) causes important modifications in the availability and use of different energy substrates in various organs and tissues. Similarly, dietary manipulations such as high fat diets also affect systemic energy metabolism. However, how the brain adapts to these situations remains unclear. To investigate these issues, control and alloxan-induced type I diabetic rats were fed either a standard or a high fat diet enriched with advanced glycation end products (AGEs) (HAGE diet). The HAGE diet increased their levels of blood ketone bodies, and this effect was exacerbated by DM induction. To determine the effects of diet and/or DM induction on key cerebral bioenergetic parameters, both ketone bodies (ß-hydroxybutyric acid) and lactate oxidation were measured. In parallel, the expression of Monocarboxylate Transporter 1 (MCT1) and 2 (MCT2) isoforms in hippocampal and cortical slices from rats submitted to these diets was assessed. Ketone body oxidation increased while lactate oxidation decreased in hippocampal and cortical slices in both control and diabetic rats fed a HAGE diet. In parallel, the expression of both MCT1 and MCT2 increased only in the cerebral cortex in diabetic rats fed a HAGE diet. These results suggest a shift in the preferential cerebral energy substrate utilization in favor of ketone bodies in animals fed a HAGE diet, an effect that, in DM animals, is accompanied by the enhanced expression of the related transporters.

2.
J Psychiatr Res ; 46(6): 819-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22520512

RESUMO

Schizophrenia (SZ) is a debilitating neurodevelopmental disorder that strikes at a critical period of a young person's life. Its pathophysiology could be the result of deregulation of synaptic plasticity, with downstream alterations of inflammatory immune processes regulate by cytokines, impaired antioxidant defense and increased lipid peroxidation. The aim of this study was to examine serum oxidative stress markers and inflammatory cytokines in early and late phases of chronic SZ. Twenty-two patients at early stage (within first 10 years of a psychotic episode), 39 at late stage (minimum 10 years after diagnosis of SZ) and their respective matched controls were included. Each subject had 5 ml blood samples collected by venipuncture to examined thiobarbituric acid-reactive substances (TBARS), total reactive antioxidant potential (TRAP), protein carbonyl content (PCC), Interleukins 6 and 10 (IL-6, IL-10) and tumor necrosis factor alpha (TNF-alpha). TBARS, IL-6 and PCC levels were significantly higher in patients with SZ at early and late stages than in controls. There were no differences for TRAP and TNF-alpha levels in patients with SZ at early and late stages than in controls. IL-10 levels were decreased in patients at late stage and a decrease trend in early stage was found. Results provided evidence consistent with comparable biological markers across chronic SZ. The concept of biochemical staging proposed by others for bipolar disorder is not seen in this cohort of patients with SZ, at least for cytokines and oxidative stress markers. Our findings reinforce the need of assessment of individuals in ultra high risk to develop psychosis and first-episode population.


Assuntos
Citocinas/sangue , Complexo Mediador/sangue , Carbonilação Proteica , Esquizofrenia/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Adulto , Idade de Início , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estatísticas não Paramétricas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA