Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118595, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462080

RESUMO

Over the last years, the strategy of employing inevitable organic waste and residue streams to produce valuable and greener materials for a wide range of applications has been proven an efficient and suitable approach. In this research, sulfur-doped porous biochar was produced through a single-step pyrolysis of birch waste tree in the presence of zinc chloride as chemical activator. The sulfur doping process led to a remarkable impact on the biochar structure. Moreover, it was shown that sulfur doping also had an important impact on sodium diclofenac (S-DCF) removal from aqueous solutions due to the introduction of S-functionalities on biochar surface. The adsorption experiments suggested that General and Liu models offered the best fit for the kinetic and equilibrium studies, respectively. The results showed that the kinetic was faster for the S-doped biochar while the maximum adsorption capacity values at 318 K were 564 mg g-1 (non-doped) and 693 mg g-1 (S-doped); highlighting the better affinity of S-doped biochar for the S-DCF molecule compared to non-doped biochar. The thermodynamic parameters (ΔH0, ΔS0, ΔG0) suggested that the S-DCF removal on both adsorbents was spontaneous, favourable, and endothermic.


Assuntos
Carvão Vegetal , Diclofenaco , Enxofre , Termodinâmica , Poluentes Químicos da Água , Diclofenaco/química , Cinética , Adsorção , Poluentes Químicos da Água/química , Enxofre/química , Carvão Vegetal/química , Purificação da Água/métodos , Porosidade
2.
Environ Sci Pollut Res Int ; 30(23): 64067-64077, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060415

RESUMO

In this study, a sustainable and easily prepared hydrochar from wood waste was studied to adsorb and recover the rare earth element cerium (Ce(III)) from an aqueous solution. The results revealed that the hydrochar contains several surface functional groups (e.g., C-O, C = O, OH, COOH), which largely influenced its adsorption capacity. The effect of pH strongly influenced the Ce(III) removal, achieving its maximum removal efficiency at pH 6.0 and very low adsorption capacity under an acidic solution. The hydrochar proved to be highly efficient in Ce(III) adsorption reaching a maximum adsorption capacity of 327.9 mg g-1 at 298 K. The kinetic and equilibrium process were better fitted by the general order and Liu isotherm model, respectively. Possible mechanisms of Ce(III) adsorption on the hydrochar structure could be explained by electrostatic interactions and chelation between surface functional groups and the Ce(III). Furthermore, the hydrochar exhibited an excellent regeneration capacity upon using 1 mol L-1 of sulfuric acid (H2SO4) as eluent, and it was reused for three cycles without losing its adsorption performance. This research proposes a sustainable approach for developing an efficient adsorbent with excellent physicochemical and adsorption properties for Ce(III) removal.


Assuntos
Metais Terras Raras , Poluentes Químicos da Água , Madeira/química , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Adsorção , Água , Cinética
3.
Environ Technol ; 39(9): 1173-1187, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28443387

RESUMO

Activated carbons (ACs) prepared from tucumã seed (Astrocaryum aculeatum) were used for 2-nitrophenol removal from aqueous solutions. The ACs were characterized by elemental analysis, FTIR, N2 adsorption/desorption isotherms, TGA, hydrophobicity/hydrophilicity balance, and total of acidic and basic groups. The ACs showed to have hydrophilic surfaces and they presented high specific surface areas (up to 1318 m2 g-1). In batch optimization studies, maximum removal was obtained at pH 7, contact time of 30 min, adsorbent dosage 1.5 gL-1 and temperature of 50°C. The general-order kinetic model and Liu isotherm model best fit the kinetic and equilibrium adsorption data with a maximum adsorption capacity of 1382 mg g-1 at 50°C. Effect of temperature and thermodynamic studies revealed that the adsorption processes of 2-nitrophenol onto ACs are dependent on temperature and are exothermic and spontaneous, respectively. About the applicability of the ACs for treating simulated effluents, the tucumã seed-activated carbon showed an excellent outcome in the treatment of simulated effluents, evidencing its high efficiency for phenolic compound adsorption. Tucumã seed-ACs showed to be cost effective and highly efficient adsorbents for efficient removal of 2-nitrophenol from aqueous solutions.


Assuntos
Arecaceae , Carvão Vegetal/química , Micro-Ondas , Nitrofenóis/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Soluções , Termodinâmica , Poluentes Químicos da Água , Purificação da Água
4.
Environ Sci Pollut Res Int ; 24(6): 5918-5932, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28064396

RESUMO

Activated carbon (AC)/CoFe2O4 nanocomposites, MAC-1 and MAC-2, were prepared by a simple pyrolytic method using a mixture of iron(III)/cobalt(II) benzoates and iron(III)/cobalt(II) oxalates, respectively, and were used as efficient adsorbents for the removal of amoxicillin (AMX) and paracetamol (PCT) of aqueous effluents. The synthesized nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The sizes of cobalt ferrite nanoparticles formed from benzoates of iron(III)/cobalt(II) and oxalates of iron(III)/cobalt(II) precursors were in the ranges of 5-80 and 6-27 nm, respectively. The saturation magnetization (M s), remanence (M r) and coercivity (H c) of the MAC-2 nanocomposites were found to be 3.07 emu g-1, 1.36 emu g-1 and 762.49 Oe; for MAC-1, they were 0.2989 emu g-1, 0.0466 emu g-1 and 456.82 Oe. The adsorption kinetics and isotherm studies were investigated, and the results showed that the as-prepared nanocomposites MAC-1 and MAC-2 could be utilized as an efficient, magnetically separable adsorbent for environmental cleanup. The maximum sorption capacities obtained were 280.9 and 444.2 mg g-1 of AMX for MAC-1 and MAC-2, respectively, and 215.1 and 399.9 mg g-1 of PCT using MAC-1 and MAC-2, respectively. Both adsorbents were successfully used for simulated hospital effluents, removing at least 93.00 and 96.77% for MAC-1 and MAC-2, respectively, of a mixture of nine pharmaceuticals with high concentrations of sugars, organic components and saline concentrations.


Assuntos
Acetaminofen/isolamento & purificação , Amoxicilina/isolamento & purificação , Carvão Vegetal/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cobalto/química , Compostos Férricos/química , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Soluções , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Sci Total Environ ; 539: 560-565, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26383858

RESUMO

Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimize exposure to these natural fertilizing basalt dust wastes and is, thus, of direct relevance to both the industrial sector of basalt mining and to agriculture in the region.


Assuntos
Monitoramento Ambiental , Nanopartículas/química , Silicatos/análise , Poluentes do Solo/química , Resíduos/análise , Brasil , Poeira/análise , Mineração , Nanopartículas/análise , Tamanho da Partícula , Solo , Poluentes do Solo/análise
6.
Sci Total Environ ; 447: 169-78, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23380565

RESUMO

Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River.

7.
Sci Total Environ ; 430: 34-47, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22613465

RESUMO

The extraction of sulphur produces a hematite-rich waste, known as roasted pyrite ash, which contains significant amounts of environmentally sensitive elements in variable concentrations and modes of occurrence. Whilst the mineralogy of roasted pyrite ash associated with iron or copper mining has been studied, as this is the main source of sulphur worldwide, the mineralogy, and more importantly, the characterization of submicron, ultrafine and nanoparticles, in coal-derived roasted pyrite ash remain to be resolved. In this work we provide essential data on the chemical composition and nanomineralogical assemblage of roasted pyrite ash. XRD, HR-TEM and FE-SEM were used to identify a large variety of minerals of anthropogenic origin. These phases result from highly complex chemical reactions occurring during the processing of coal pyrite of southern Brazil for sulphur extraction and further manufacture of sulphuric acid. Iron-rich submicron, ultrafine and nanoparticles within the ash may contain high proportions of toxic elements such as As, Se, U, among others. A number of elements, such as As, Cr, Cu, Co, La, Mn, Ni, Pb, Sb, Se, Sr, Ti, Zn, and Zr, were found to be present in individual nanoparticles and submicron, ultrafine and nanominerals (e.g. oxides, sulphates, clays) in concentrations of up to 5%. The study of nanominerals in roasted pyrite ash from coal rejects is important to develop an understanding on the nature of this by-product, and to assess the interaction between emitted nanominerals, ultra-fine particles, and atmospheric gases, rain or body fluids, and thus to evaluate the environmental and health impacts of pyrite ash materials.


Assuntos
Cinza de Carvão/análise , Poluentes Ambientais/análise , Minerais/análise , Nanopartículas/análise , Material Particulado/análise , Brasil , Monitoramento Ambiental , Compostos Férricos/análise , Ferro/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Sulfetos/química , Ácidos Sulfúricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...