Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(27): 35811-35821, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33675494

RESUMO

Acetaldehyde plays an important role in oxidative cycles in the troposphere. Estimates of its air-water flux are important in global models. Biological degradation is believed to be the dominant loss process in water, but there have been few measurements, none in estuaries. Acetaldehyde degradation rates were measured in surface waters at the inflow to the Upper Newport Back Bay estuary in Orange County, Southern California, USA, over a 6-month period including the rainy winter season. Deuterated acetaldehyde was added to filtered and unfiltered water samples incubated in glass syringes, and its loss analyzed by purge and trap gas chromatography mass spectrometry. Filtered samples showed no significant degradation, suggesting that particle-mediated degradation is the dominant removal process. Correlation between measured degradation rate constants in unfiltered incubations and bacteria counts suggests the loss is due to microorganisms. Degradation in unfiltered samples followed first-order kinetics, with rate constants ranging from 0.0006 to 0.025 min-1 (k; average 0.0043 ± 0.006 min-1). Turnover (1/k) ranged from 40 to 1667 min, consistent with prior studies in coastal waters. Acetaldehyde concentrations in the estuary are estimated to range from 30 to ~500 nM (average ~250 nM). Results suggest the estuary is a source of acetaldehyde to the atmosphere.


Assuntos
Estuários , Poluentes Químicos da Água , Acetaldeído , California , Monitoramento Ambiental , Água do Mar , Poluentes Químicos da Água/análise
2.
Chemosphere ; 247: 125906, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069714

RESUMO

Many removal mechanisms in treatment wetlands involve absorption to organic matter. Optical properties and DOC levels of waters entering and exiting 4 treatment wetland systems in Orange County, Southern California, were measured to characterize the dissolved organic matter pool. Average DOC levels decreased between the inlets and outlets, except for Forge Street (FS), which increased. For 3 wetlands, absorption coefficients decreased between inlet and outlet; the exception was FS, which increased. Average spectral slopes for the inlets and outlets were similar. Average intensities of terrestrial humic peaks A and C from 3D EEM fluorescence spectra decreased between the inlets and outlets for most wetlands. No EEM protein peaks were observed. Average flu/abs ratios for inlets and outlets were similar (high point for FS inlet excluded), suggesting chromophoric dissolved organic matter (CDOM) of a similar composition was present. The average FI value for the inlets and outlets was ∼1.5, consistent with terrestrial sources of CDOM. Average BIX values for the inlets and outlets were ∼0.8, suggesting limited contributions from autochthonous production of CDOM. Dominant plant species in the wetlands were cattail and bulrush. Humic peaks A and C, along with protein peaks, were observed in plant leachates. Protein peaks rapidly degraded with solar simulator irradiation. Results indicate that most of the wetlands are a net sink for CDOM, possibly due to absorption to sediments. The FS wetland appears to have a source of non-CDOM optically active organic carbon, possibly from a pollutant.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , California , Carbono , Fluorescência , Espectrometria de Fluorescência/métodos
3.
Environ Sci Pollut Res Int ; 27(11): 12673-12682, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32006326

RESUMO

Interest in understanding the cycling of ethanol in the environment has grown as ethanol use as a gasoline additive has increased. The production of acetaldehyde from ethanol was measured in Southern California coastal seawater. The rate of increase of acetaldehyde was positively correlated with the rate constant for ethanol biodegradation and bacteria count and was consistent with two consecutive first-order reactions where acetaldehyde is first biologically produced from ethanol then consumed. Correlation with bacteria counts suggested that acetaldehyde degradation was also a biological process. The rate constants for acetaldehyde production from ethanol and acetaldehyde loss averaged 3.0 ± 3.4 × 10-3 min-1 and 2.3 ± 4.5 × 10-2 min-1 respectively. The branching ratio for acetaldehyde production from ethanol was 0.46 ± 0.26 and estimated acetaldehyde biological production rates ranged from 0.022 to 0.800 nM min-1. With high bacterial counts, biological production rates from ethanol exceeded photochemical production rates from chromophoric dissolved organic matter. Overall, acetaldehyde production rates were larger than biodegradation rates, suggesting these waters are a source of acetaldehyde to the atmosphere. Extrapolation to higher ethanol concentrations associated with spills suggests that the production rate of acetaldehyde will initially increase and then decrease as ethanol concentrations increase.


Assuntos
Acetaldeído , Etanol , Biodegradação Ambiental , Água do Mar
4.
J Phys Chem A ; 123(38): 8109-8121, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31487176

RESUMO

The photochemistry of glyoxylic acid (HC(O)C(O)OH) is explored in the near UV in both the singlet (S1/S0) and triplet (T1) manifolds using density functional theory (M06-2X/aug-cc-pVTZ) to reach an overall mechanistic picture of the atmospherically relevant photochemistry in the gas phase. The calculated energies and structures are also used in RRKM kinetics calculations to compare the relative reaction rates on each of these electronic states. The major photolysis pathways are two possible photodecarboxylation reactions: direct C-C bond cleavage (Norrish Type I reaction) and ß-hydrogen transfer followed by CO2 loss. These results indicate that from λ = 350-380 nm both photodecarboxylation pathways can occur following intersystem crossing to the T1 surface. However, hydrogen transfer-decarboxylation initiated on S1 becomes increasingly important at λ < 350 nm. At the lower energy UV wavelengths available in the atmosphere (λ = 380-400 nm), reactions can only occur in S0 where concerted hydrogen transfer-decarboxylation is the dominant dissociation pathway with some minor contributions from CO loss/decarbonylation reactions.

5.
Environ Sci Pollut Res Int ; 25(34): 34777-34787, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30324377

RESUMO

Fluorescence 3D excitation emission matrix (EEM) spectra of oil products in artificial seawater were monitored as a function of irradiation time in a solar simulator. EEMs were obtained for an excitation range of 240-400 nm and an emission range of 248-830 nm; this is the wavelength range typically used in chromophoric dissolved organic matter (CDOM) EEM studies in natural waters. This allows for comparison to prior work on CDOM in an oil-contaminated salt marsh that attributed a fluorescent component in the tryptophan/tyrosine protein-region to oil. For comparison, EEMs were also measured for a broader excitation range of 220-400 nm typically used in oil related studies to capture the primary oil peak at lower excitation wavelengths. Fluorescence intensities in both excitation wavelength ranges decayed exponentially with irradiation time consistent with first-order kinetics. There was little change in wavelength for primary oil peaks. However, in the CDOM, wavelength range peaks typically shifted to longer excitation and shorter emission wavelengths, moving into the protein peak region of the CDOM EEM spectrum. This is consistent with a decrease in the complexity of the structure of the organic material. Half-lives for photodegradation ranged from 0.36 to 7.2 days for the oil wavelength range and 0.14 to 28 days for the CDOM wavelength range. Higher density oils typically had higher degradation rate constants. Peak locations and peak behaviour are consistent with the primary fluorophore in the oil products being PAH-related.


Assuntos
Petróleo , Água do Mar/química , Espectrometria de Fluorescência/métodos , Biodegradação Ambiental , Fluorescência , Meia-Vida , Cinética , Processos Fotoquímicos , Luz Solar , Triptofano , Tirosina , Poluentes Químicos da Água/química , Áreas Alagadas
6.
Mar Pollut Bull ; 114(1): 157-168, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27595619

RESUMO

Chromophoric dissolved organic matter (CDOM) optical properties were measured in surface and pore waters as a function of depth and distance from an oil well in a southern California salt marsh. Higher fluorescence and absorbances in pore vs. surface waters suggest soil pore water is a reservoir of CDOM in the marsh. Protein-like fluorophores in pore waters at distinct depths corresponded to variations in sulfate depletion and Fe(II) concentrations from anaerobic microbial activity. These variations were supported by fluorescence indexes and are consistent with differences in optical molecular weight and aromaticity indicators. Fluorescence indices were consistent with autochthonous material of aquatic origin in surface waters, with more terrestrial, humified allochthonous material in deeper pore waters. CDOM optical properties were consistent with significantly enhanced microbial activity in regions closest to the oil well, along with a three-dimensional excitation/emission matrix fluorescence spectrum peak attributable to oil, suggesting anaerobic microbial degradation of oil.


Assuntos
Monitoramento Ambiental , Campos de Petróleo e Gás , Compostos Orgânicos/química , Poluentes Químicos da Água/química , Áreas Alagadas , California , Fluorescência , Cloreto de Sódio , Espectrometria de Fluorescência/métodos , Água , Poluentes Químicos da Água/análise
7.
Mar Pollut Bull ; 79(1-2): 54-60, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24445128

RESUMO

To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H2O2) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H2O2 with concentrations ranging from 15 to 500 µM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h(-1)); values ranged from 6.99 to 0.137 mM h(-1) for quinones. Apparent quantum yields (Θ app; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation-emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM.


Assuntos
Benzopiranos/química , Substâncias Húmicas , Peróxido de Hidrogênio/química , Modelos Químicos , Poluentes Químicos da Água/química , Fotoquímica
8.
Mar Pollut Bull ; 64(3): 532-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22281049

RESUMO

Photolysis rates of phenanthrene as a function of ionic strength (salinity), oxygen levels and humic acid concentrations were measured in aqueous solution over the range of conditions found in fresh to marine waters. Photolysis followed first order kinetics, with an estimated photodegradation half-life in sunlight in pure water of 10.3±0.7h, in the mid-range of published results. Photolysis rate constants decreased by a factor of 5 in solutions with humic acid concentrations from 0 to 10 mg C L(-1). This decrease could be modeled entirely based on competitive light absorption effects due to the added humics. No significant ionic strength or oxygen effects were observed, consistent with a direct photolysis mechanism. In the absence of significant solution medium effects, the photodegradation lifetime of phenanthrene will depend only on solar fluxes (i.e. temporal and seasonal changes in sunlight) and not vary with a freshwater to marine environment.


Assuntos
Modelos Químicos , Fenantrenos/química , Poluentes Químicos da Água/química , Meio Ambiente , Água Doce/química , Substâncias Húmicas/análise , Cinética , Concentração Osmolar , Oxigênio/análise , Fenantrenos/análise , Processos Fotoquímicos , Água do Mar/química , Poluentes Químicos da Água/análise
9.
Mar Pollut Bull ; 60(12): 2284-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20739035

RESUMO

Hydrogen peroxide is photochemically produced in natural waters. It has been implicated in the oxidative-induced mortality of fecal indicator bacteria (FIB), a microbial water quality measure. To assess levels and cycling of peroxide in beach waters monitored for FIB, diel studies were carried out in surf zone waters in July 2009 at Crystal Cove State Beach, Southern California, USA. Maximum concentrations of 160-200 nM were obtained within 1h of solar noon. Levels dropped at night to 20-40 nM, consistent with photochemical production from sunlight. Day-time production and night-time dark loss rates averaged 16 ± 3 nM h(-1) and 12 ± 4 nM h(-1) respectively. Apparent quantum yields averaged 0.07 ± 0.02. Production was largely dominated by sunlight, with some dependence on chromophoric dissolved organic matter (CDOM) levels in waters with high absorption coefficients. Peroxide levels measured here are sufficient to cause oxidative-stress-induced mortality of bacteria, affect FIB diel cycling and impact microbial water quality in marine bathing waters.


Assuntos
Praias , Monitoramento Ambiental , Peróxido de Hidrogênio/análise , Poluentes Químicos da Água/análise , California , Fenômenos Químicos , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química
10.
Water Res ; 44(7): 2203-10, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20110100

RESUMO

Hydrogen peroxide (H(2)O(2)) was measured in the surf zone at 13 bathing beaches in Southern California, USA. Summer dry season concentrations averaged 122 +/- 38 nM with beaches with tide pools having lower levels (50-90 nM). No significant differences were observed for ebb waters at a salt marsh outlet vs. a beach (179 +/- 20 vs. 163 +/- 26 nM), and between ebb and flood tides at one site (171 +/- 24 vs. 146 +/- 42 nM). H(2)O(2) levels showed little annual variation. Diel cycling was followed over short (30 min; 24 h study) and long (d) time scales, with maximum afternoon concentration = 370 nM and estimated photochemical production rate of 44 nM h(-1). There was no correlation between the absorbance coefficient at 300 nm (used as a measure of chromophoric dissolved organic matter (CDOM) levels) and H(2)O(2). H(2)O(2) concentrations measured in this study are likely sufficient to inhibit fecal indicator bacteria in marine recreational waters through indirect photoinactivation.


Assuntos
Praias , Peróxido de Hidrogênio/análise , Água do Mar/análise , Animais , California , Enterococcus/efeitos dos fármacos , Monitoramento Ambiental/métodos , Escherichia coli/efeitos dos fármacos , Fezes/microbiologia , Humanos , Peróxido de Hidrogênio/farmacologia , Água do Mar/microbiologia , Microbiologia da Água
11.
Chemosphere ; 76(1): 141-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19269002

RESUMO

Hydrogen peroxide (H(2)O(2)) photochemical production was measured in bulk and size-fractionated surf zone and source waters (Orange County, California, USA). Post-irradiation (60 min; 300 W ozone-free xenon lamp), maximum H(2)O(2) concentrations were approximately 10000 nM (source) and approximately 1500 nM (surf zone). Average initial hydrogen peroxide production rates (HPPR) were higher in bulk source waters (11+/-7.0 nM s(-1)) than the surf zone (2.5+/-1 nM s(-1)). A linear relationship was observed between non-purgeable dissolved organic carbon and absorbance coefficient (m(-1) (300 nm)). HPPR increased with increasing absorbance coefficient for bulk and size-fractionated source waters, consistent with photochemical production from CDOM. However, HPPR varied significantly (5x) for surf zone samples with the same absorbance coefficients, even though optical properties suggested CDOM from salt marsh source waters dominates the surf zone. To compare samples with varying CDOM levels, apparent quantum yields (Phi) for H(2)O(2) photochemical production were calculated. Source waters showed no significant difference in Phi between bulk, large (>1000 Da (>1 kDa)) and small (<1 kDa) size fractions, suggesting H(2)O(2) production efficiency is homogeneously distributed across CDOM size. However, surf zone waters had significantly higher Phi than source (bulk 0.086+/-0.04 vs. 0.034+/-0.013; <1 kDa 0.183+/-0.012 vs. 0.027+/-0.018; >1 kDa 0.151+/-0.090 vs. 0.016+/-0.009), suggesting additional production from non-CDOM sources. H(2)O(2) photochemical production was significant for intertidal beach sand and senescent kelp (sunlight; approximately 42 nM h(-1) vs. approximately 5 nM h(-1)), on the order of CDOM production rates previously measured in coastal and oceanic waters. This is the first study of H(2)O(2) photochemical production in size-fractionated coastal waters showing significant production from non-CDOM sources in the surf zone.


Assuntos
Peróxido de Hidrogênio/metabolismo , Água do Mar/análise , Poluentes da Água/análise , California , Monitoramento Ambiental , Fotoquímica , Teoria Quântica , Microbiologia da Água
12.
Mar Pollut Bull ; 56(3): 397-401, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18062995

RESUMO

Hydrogen peroxide concentrations [H(2)O(2)] have been measured over the last two decades in multiple studies in surface waters in coastal, estuarine and oceanic systems. Diurnal cycles consistent with a photochemical production process have frequently being observed, with [H(2)O(2)] increasing by two orders of magnitude over the course of the day, from low nM levels in the early morning to 10(2)nM in late afternoon. Production rates range from <10 for off-shore ocean waters to 20-60nMh(-1) for near-shore coastal and estuarine environments. Slow night-time loss rates (<10nMh(-1)) have been attributed to biological and particle mediated processes. Diurnal cycles have also frequently been observed in fecal indicator bacteria (FIB) levels in surf zone waters monitored for microbial water quality. Measured peak peroxide concentrations in surface coastal seawaters are too low to directly cause FIB mortality based on laboratory studies, but likely contribute to oxidative stress and diurnal cycling. Peroxide levels in the surf zone may be increased by additional peroxide production mechanisms such as deposition, sediments and stressed marine biota, further enhancing impacts on FIB in marine bathing waters.


Assuntos
Bactérias/crescimento & desenvolvimento , Ecossistema , Fezes/microbiologia , Peróxido de Hidrogênio/metabolismo , Água do Mar/análise , Natação , Poluentes da Água/análise , Animais , Bactérias/isolamento & purificação , Biodiversidade , Monitoramento Ambiental , Geografia , Humanos , Mortalidade , Fatores de Tempo , Movimentos da Água , Abastecimento de Água
13.
Mar Pollut Bull ; 54(9): 1507-13, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17574279

RESUMO

Optical properties of colored dissolved organic matter (CDOM) were measured as a tracer of polluted waters in a Southern California surf-zone with consistently high levels of fecal indicator bacteria. Salinity, temperature, fecal coliform, absorbance (200-700nm) and fluorescence (lambda(excitation)=350nm; lambda(emission)=360-650nm) were measured in the creek and surf-zone during a dry and rain event. Fluorescence to absorption ratios for CDOM were used to distinguish water masses, with two distinct CDOM end-members identified as creek (flu/abs=8.7+/-0.8x10(4)) and coastal (flu/abs=2.2+/-0.3x10(4)). Waters containing the same CDOM end-member had highly variable bacterial levels during the dry event, suggesting intermittent sources of bacteria added to a uniform water source, consistent with marine birds. During the rain event, increased levels of the creek end-member and bacteria indicated a second bacteria source from runoff.


Assuntos
Enterobacteriaceae/isolamento & purificação , Monitoramento Ambiental/métodos , Poluentes da Água/isolamento & purificação , California , Contagem de Colônia Microbiana , Cor , Fezes/microbiologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...