Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 497, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845606

RESUMO

Phosphorus (P) imbalances are a recurring issue in cultivated soils with pastures across diverse regions. In addition to P deficiency, the prevalence of excess P in soil has escalated, resulting in damage to pasture yield. In response to this reality, there is a need for well-considered strategies, such as the application of silicon (Si), a known element for alleviating plant stress. However, the influence of Si on the morphogenetic and chemical attributes of forage grasses grown in various soils remains uncertain. Consequently, this study aimed to assess the impact of P deficiency and excess on morphogenetic and chemical parameters, as well as digestibility, in Zuri guinea grass cultivated in Oxisol and Entisol soils. It also sought to determine whether fertigation with nanosilica could mitigate the detrimental effects of these nutritional stresses. Results revealed that P deficiency led to a reduction in tiller numbers and grass protein content, along with an increase in lignin content. Conversely, P excess resulted in higher proportions of dead material and lignin, a reduced mass leaf: stem ratio in plants, and a decrease in dry matter (DM) yield. Fertigation with Si improved tillering and protein content in deficient plants. In the case of P excess, Si reduced tiller mortality and lignin content, increased the mass leaf:stem ratio, and enhanced DM yield. This approach also increased yields in plants with sufficient P levels without affecting grass digestibility. Thus, Si utilization holds promise for enhancing the growth and chemical characteristics of forage grasses under P stress and optimizing yield in well-nourished, adapted plants, promoting more sustainable pasture yields.


Assuntos
Panicum , Fósforo , Solo , Lignina , Panicum/fisiologia , Plantas
2.
Sci Rep ; 13(1): 10284, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355676

RESUMO

Silicon (Si) nanoparticles can attenuate nutritional disorders caused by phosphorus in forages through nutritional homeostasis. This paper aims to evaluate the effects of P deficiency and toxicity in Megathyrsus maximus cultivated in two types of soils and to verify whether Si application via fertigation can mitigate these imbalances. The following two experiments were carried out: cultivation of forage plants in pots with Entisol and Oxisol, in a 3 × 2 factorial design, with three nutritional levels of phosphorus (deficient, adequate, and excessive) and two Si concentrations in the irrigation water (0 and 1.5 mmol L-1). Height, number of tillers, rate of leaf senescence, dry matter production, C:N, C:Si, C:P, and N:P ratios; and C, P, and N use efficiencies were evaluated in two growth cycles. P imbalances hampered carbon assimilation, C:N:P homeostasis, and dry matter production. Nanosilica fertigation promoted silicon uptake, improving C:N:P homeostasis and nutritional efficiency in plants under P deficiency and toxicity. Leaf senescence was reduced with addition of Si in plants grown in Oxisol in the three nutritional states of P. Silicon attenuated the stress caused by P toxicity in Entisol and Oxisol, improving production in plants without nutritional stress in Oxisol. The supply of Si nanoparticles in the cultivation of M. maximus can contribute to a more efficient and sustainable use of phosphorus in pastures.


Assuntos
Poaceae , Silício , Silício/farmacologia , Fósforo , Plantas , Água
3.
Front Plant Sci ; 13: 949909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968098

RESUMO

Studies with silicon (Si) in sugarcane indicate a greater response in productivity in plants under stress, and the underlying mechanisms of Si in the crop are poorly reported. In this context, the benefits of Si in the crop's stem production are expected to occur at the C:N:P stoichiometry level in plant tissues, benefiting plants with and without stress. However, the extension of this response may vary in different soils. Thus, this research aimed to evaluate if fertigation with Si modifies the C:N:P stoichiometry and if it can increase sugarcane's nutritional efficiency and vegetative and productive parameters. Therefore, three experiments were installed using pre-sprouted seedlings to cultivate sugarcane in tropical soils belonging to the Quartzarenic Neosol, Eutrophic Red Latosol, and Dystrophic Red Latosol classes. The treatments comprised a 2 × 2 factorial scheme in each soil. The first factor was composed without water restriction (water retention = 70%; AWD) and with water restriction (water retention = 35%; PWD). The second factor presented Si concentrations (0 mM and 1.8 mM) arranged in randomized blocks with five replications. Fertigation with Si increases the Si and P concentration, the C and N efficiency, the C:N ratio, and the dry mass production. However, it decreases the C and N concentration and the C:P, C:Si, and N:P ratios in sugarcane leaves and stems regardless of the water regime adopted in the three tropical soils. Cluster and principal components analysis indicated that the intensity of the beneficial effects of Si fertigation on sugarcane plants varies depending on the cultivation soil and water conditions. We found that Si can be used in sugarcane with and without water stress. It changes the C:N:P homeostasis enough to improve the nutritional efficiency of C, P, N, and, consequently, the dry mass accumulation on the stems, with variation in the different cultivated soils.

4.
Sci Rep ; 12(1): 12732, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882954

RESUMO

Multiple aspects of the physiological and nutritional mechanisms involved with silicon (Si) absorption by quinoa plants remain poorly investigated, as well as the best way of supplying this element to crops. Thus, this study aimed at evaluating whether the application of Si increases its uptake by quinoa plants and consequently the use efficiency of N and P, as well as the levels of phenolic compounds in the leaves, crop productivity and the biofortification of grains. For this purpose, the concentration of 3 mmol L-1 of Si was tested, according to the following procedures: foliar application (F), root application in the nutrient solution (R), combined Si application via nutrient solution and foliar spraying (F + R), and no Si application (0). The provision of Si through the leaves and roots promoted the highest uptake of the element by the plant, which resulted in an increased use efficiency of N and P. Consequently, such a higher uptake favored the productivity of grains. The optimal adoption of the application of Si through leaves and roots promoted the highest Si concentration and ascorbic acid content in quinoa grains.


Assuntos
Chenopodium quinoa , Silício , Biofortificação , Grão Comestível , Folhas de Planta
5.
Front Plant Sci ; 13: 826512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498639

RESUMO

Climate change has prolonged periods of water deficit in sugarcane and energy cane crops. This condition induces an imbalance of the carbon (C): nitrogen (N): phosphorus (P) stoichiometric homeostasis, impairing accumulated nutrients from being converted into biomass. Silicon (Si) supplementation can mitigate the damage caused by water deficit in plants by improving the C:N:P balance, increasing C, N, and P use efficiencies and the biomass conversion, and reducing climate change effects on crops. This study assesses the beneficial effects of Si applied through fertigation associated with foliar spraying on the alleviation of damage caused by severe water deficit in sugarcane and energy cane for intermediate and long periods. In addition, the effects in maintenance of nutritional homeostasis we assessed and C, N, and P use efficiencies on sugarcane and energy cane under those conditions were increased. Four experiments were conducted during the first growth cycle of each species. The effect of fertigation associated with Si foliar spraying was evaluated by applying Si only during the seedling formation phase in sugarcane and energy cane grown under severe water deficit for 60 days after transplanting (intermediate period). Then, the effect of Si applied during seedling formation and supplemented after transplanting was evaluated in sugarcane and energy cane grown under severe water deficit for 160 days after transplanting (long period). The Si supply decreased C contents, modified the C:N:P ratio, and increased C, N, and P use efficiencies in plants of both species under water deficit at the intermediate and long periods after transplanting. The effects of applying Si through fertigation associated with foliar spraying during seedling formation mitigated the damage caused by severe water deficit in the intermediate period, which was mainly observed in sugarcane. When supplemented with Si after transplanting, the mitigating effects occurred in both species under severe long period water deficit. Therefore, the Si supply through fertigation associated with foliar spraying is a viable alternative to provide Si to the plant. It also comes with beneficial effects that partially reverse the damage to nutritional homeostasis and increase nutritional efficiency in plants under severe water deficit.

6.
Sci Rep ; 12(1): 1897, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115626

RESUMO

Climate change increases the occurrence of droughts, decreasing the production of tropical forages through the induction of physiological stress. Si is expected to broaden the limit from physiological stress of forages grown under water restriction, which may come from an improvement in the stoichiometric homeostasis of Si with N and C, favoring physiological aspects. This study assessed whether Si supply via fertigation improves physiological aspects and the water content in the plant by means of an antioxidant defense system and changes in the C:N:Si stoichiometry during the regrowth of two cultivars of Panicum maximum grown under two soil water regimes (70 and 40% of the soil's water retention capacity). The forages studied are sensitive to water deficit without silicon supply. The application of Si via fertigation attenuated the water deficit, favoring plant growth by stabilizing the stoichiometric homeostasis C:N and C:Si, which are responsible for increasing the plant capacity of converting accumulated C in dry mass, favoring the water content of the plant tissue and the photosynthetic efficiency. This study highlights the importance of the physiological function of Si, and effects on the stoichiometry of C and N, which are neglected in most research on forages grown under water restriction.

7.
Sci Rep ; 11(1): 20916, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686731

RESUMO

Climate change has increased the occurrence of water deficit in regions where sugarcane and energy cane are cultivated, jeopardizing dry matter production of stems. It was hypothesized that the reasons behind this fact relate to C:N:P stoichiometric modifications in these species that impair the conversion rates of accumulated nutrients in the stems, which could be attenuated by supplying silicon (Si) to the crops. Thus, the aims of this study were to evaluate the effects of water deficit in sugarcane and energy cane ratoons in the presence and absence of Si, in the C:N:P stoichiometry of stems, in the use efficiency of these nutrients and in the accumulation of dry matter in stems. Two experiments were carried out, using sugarcane (Saccharum officinarum) and energy cane (S. spontaneum), cultivated in pots filled with a Typic Quartzipisamment. The treatments for both experiments were arranged in a factorial scheme 2 × 2, without (70% of the soil's water retention capacity) and with (30% of the capacity) water deficit, without and with the application of Si via fertirrigation, associated with foliar pulverization, both at a concentration of 2.5 mmol L-1, arranged in randomized blocks. The reduction in dry matter production of stems in both species caused by water deficit was due to modifications of the C, N and P stoichiometric homeostasis, but the benefit of Si in these plants when increasing dry matter production was not a reflection of the change in homeostasis, thus it may be involved in other mechanisms that remain unknown and should be further studied.

8.
Planta ; 254(5): 104, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686920

RESUMO

MAIN CONCLUSION: Drought alone and drought plus warming will change the nutrient requirements and biomass distributions of Stylosanthes capitata, while warming will be advantageous only under well-watered condition for the next decades. Climate change effects on natural and managed ecosystems are difficult to predict due to its multi-factor nature. However, most studies that investigate the impacts of climate change factors on plants, such as warming or drought, were conducted under one single stress and controlled environments. In this study, we evaluated the effects of elevated temperature (+ 2 °C) (T) under different conditions of soil water availability (W) to understand the interactive effects of both factors on leaf, stem, and inflorescence macro and micronutrients concentration and biomass allocation of a tropical forage species, Stylosanthes capitata Vogel under field conditions. Temperature control was performed by a temperature free-air controlled enhancement (T-FACE) system. We observed that warming changed nutrient concentrations and plant growth depending on soil moisture levels, but the responses were specific for each plant organ. In general, we found that warming under well-watered conditions greatly improved nutrient concentration and biomass production, whilst the opposite effect was observed under non-irrigated and non-warmed conditions. However, under warmed and non-irrigated conditions, leaf biomass and leaf nutrient concentration were greatly reduced when compared to non-warmed and irrigated plants. Our findings suggest that warming (2 °C above ambient temperature) and drought, as well as both combined stresses, will change the nutrient requirements and biomass distributions between plant aerial organs of S. capitata in tropical ecosystems, which may impact animal feeding in the future.


Assuntos
Secas , Fabaceae , Animais , Biomassa , Dióxido de Carbono , Mudança Climática , Ecossistema , Estado Nutricional , Solo , Água
9.
Sci Rep ; 11(1): 9893, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972664

RESUMO

Recognizably, silicon has a beneficial effect on plant growth and productivity. In this respect, it is also known that the C, N and, P stoichiometric ratios and nutrient conversion efficiency allow identifying the interactions between elements while helping to understand the role Si plays in plant growth. This study aims to investigate whether increasing Si concentrations (0, 1, 2, and 3 mmol L-1) supplied in the nutrient solution is uptaken by quinoa, modifies the C:N:P stoichiometry while increasing nutritional efficiency and crop productivity as well. Our results revealed that the Si supply by promoting a decline in the C levels, associated with greater uptake of N and P, especially decreased the C:N and C:P ratios, favoring the C metabolism efficiency, and modulated the N and P use efficiency for biomass accumulation. This improved nutritional performance and greater use efficiency of C directly favored quinoa productivity. The future perspective is to encourage new field studies with this species to adjust silicon fertilization management to different soils aiming at enhancing quinoa productivity on a sustainable basis.

10.
J Environ Manage ; 278(Pt 1): 111540, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33126195

RESUMO

Temperature and soil water availability play important roles in the biogeochemical cycles of essential elements for plant growth, such as carbon (C), nitrogen (N), and phosphorus (P). In this study, we investigated how drought and warming impact C:N:P stoichiometric ratios of different plant organs (leaves, inflorescences, and stems), and biomass allocation and production of a field-grown pasture of Stylosanthes capitata, a tropical forage legume. We evaluated the effects of elevated temperature (+2 °C above ambient temperature) under two conditions of soil water availability, irrigated, and non-irrigated. In general, we observed that different functional plant organs showed distinct responses to drought and warming demonstrating how important is to evaluate different functional plant organs to unravel crop nutrient dynamics. In addition, interactive effects between warming and drought were observed in many situations, highlighting the importance of multifactorial studies. Our data showed that warming produced plants with more inflorescences, decreasing leaf:inflorescence ratio. However, only warming under well-watered conditions improved biomass production (in 38%). Warmed and irrigated plants showed higher stoichiometric homeostasis compared to other treatments. In an opposite direction, drought decreased P concentration and increased N:P ratios in different organs, reducing the stoichiometric homeostasis under both conditions of temperature. We have concluded that warm and well-watered conditions without restrictions in soil nutrient availability can enhance plant production, presumably due to a higher level of stoichiometric homeostasis.


Assuntos
Fabaceae , Solo , Ar , Biomassa , Nitrogênio , Folhas de Planta , Temperatura , Água
11.
Sci Total Environ ; 681: 267-274, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103664

RESUMO

Climate changes affect the growth of forage species. However, information regarding the effects of global climate change on the stoichiometry of tropical pastures is lacking, especially under field conditions. Such information is crucial to understand how temperature conditions and water availability states are likely to affect the stoichiometric homeostasis and biomass production of Panicum maximum, an important C4 tropical forage species, under future climate change scenarios. Thus, we, conducted a field experiment using a temperature free-air controlled enhancement system and evaluated the effects of two temperature conditions, ambient temperature and moderate warming (2 °C above ambient canopy temperature), and two levels of water availability, irrigated and non-irrigated, on the stoichiometric patterns of C:N:P and leaf biomass production. The experiment was conducted using a randomized complete block design in a factorial arrangement with four replications over 3 weeks. Our findings revealed that the N and P leaf concentration greatly decreased in water-stressed plants, which increased the C:N and C:P ratios, while warming increased the N:P ratio. Leaf biomass production was impaired by up to 16% under water stress and ambient temperature conditions, but the biomass production was improved by 20% under warming and irrigated conditions. Our findings showed that homeostatic instability under rainfed conditions resulted in decreased leaf biomass production. Therefore, we concluded that warming is only beneficial for plant growth (i.e., a high homeostatic capacity was maintained) under well-irrigated conditions.


Assuntos
Mudança Climática , Panicum/fisiologia , Estresse Fisiológico/fisiologia , Biomassa , Dióxido de Carbono , Monitoramento Ambiental , Homeostase , Nitrogênio , Fotossíntese , Desenvolvimento Vegetal , Temperatura
12.
New Phytol ; 203(2): 401-413, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24725318

RESUMO

A basic understanding of nutrition effects on the mechanisms involved in tree response to drought is essential under a future drier climate. A large-scale throughfall exclusion experiment was set up in Brazil to gain an insight into the effects of potassium (K) and sodium (Na) nutrition on tree structural and physiological adjustments to water deficit. Regardless of the water supply, K and Na supply greatly increased growth and leaf area index (LAI) of Eucalyptus grandis trees over the first 3 yr after planting. Excluding 37% of throughfall reduced above-ground biomass accumulation in the third year after planting for K- supplied trees only. E. grandis trees were scarcely sensitive to drought as a result of the utilization of water stored in deep soil layers after clear-cutting the previous plantation. Trees coped with water restriction through stomatal closure (isohydrodynamic behavior), osmotic adjustment and decrease in LAI. Additionally, droughted trees showed higher phloem sap sugar concentrations. K and Na supply increased maximum stomatal conductance, and the high water requirements of fertilized trees increased water stress during dry periods. Fertilization regimes should be revisited in a future drier climate in order to find the right balance between improving tree growth and limiting water shortage.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Eucalyptus/fisiologia , Potássio/farmacologia , Sódio/farmacologia , Biomassa , Brasil , Secas , Eucalyptus/efeitos dos fármacos , Eucalyptus/crescimento & desenvolvimento , Floema/química , Floema/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Estações do Ano , Solo
13.
Plant Cell Environ ; 37(1): 70-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23663049

RESUMO

Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates.


Assuntos
Eucalyptus/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Potássio/farmacologia , Sódio/farmacologia , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Eucalyptus/anatomia & histologia , Eucalyptus/fisiologia , Células do Mesofilo/fisiologia , Nitrogênio/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Potássio/análise , Sódio/análise , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...