Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5826, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037876

RESUMO

The PEDOT polymer electrode is a metal-free electrode, consisting of an acrylate (dental composite) and the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The electrode is applied as gel onto the skin and cured with blue light for 10-20 s in order to achieve a conductive bond to the skin. The electrodes are used in combination with polymer cables consisting of a textile backbone and PEDOT:PSS. To test this new electrode and cable type under different conditions we designed two stress-tests: highly sensitive temperature recordings within a head phantom during Magnetic Resonance Imaging (MRI) and long-term stability inside a climate chamber with high humidity. To study the physical behavior inside the strong magnetic field (3 Tesla), the PEDOT polymer electrode was attached to an agarose head-phantom inside a magnetic resonance tomograph during an image sequence. MRI-safe temperature sensors were placed nearby in order to measure possible heating effects. In comparison to a metal cable, nearly no rise in temperature could be observed if the electrode was used in combination with a conductive textile cable. Furthermore, the electrode showed stable impedance values inside a climate chamber for 4 consecutive days. These results pave the way for testing the PEDOT polymer electrode as biosignal recording electrode during MRI, especially for cardio MRI and Electroencephalography in combination with functional MRI (EEG-fMRI).


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Eletrodos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros/química , Imageamento por Ressonância Magnética
2.
Transl Neurosci ; 13(1): 440-452, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36561288

RESUMO

Many diseases affect the autonomous nervous system and the central nervous system simultaneously, for example Parkinson's disease or irritable bowel syndrome. To study neurophysiologic interactions between the intestinal electrical activity and the electroencephalography (EEG) pattern of the brain, we combined intestinal electrical stimulation (IES) and non-invasive telemetric full-band DC EEG recordings in an acute pig-model. Intestinal motility was monitored with accelerometers. Brain activity was analyzed with regard to network driven phenomena like phase amplitude coupling (PAC) within two time-windows: 1 min after IES (early response) and 3 min after stimulation (late response). Here we present the results for two stimulation sites (small intestine, colon) and two parietal scalp-EEG channels (right and left somatosensory cortex region). Electrical stimulation consisted of a 30 or 130 Hz pulse. In summary, the PAC modulation index at a parietal EEG recording position is decreased after IES. This effect is in line with an inhibitory effect of our IES protocol regarding peristalsis. The surprisingly strong effects of IES on network driven EEG patterns may be translated into new therapeutic techniques and/or diagnostic tools in the future. Furthermore, analytic tools, operating on sparse datasets, may be ideally suited for the integration in implantable intestinal pacemakers as feedback system.

3.
IEEE J Transl Eng Health Med ; 6: 2700507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245946

RESUMO

Intestinal electrical stimulation via implants is already used to treat several disorders like constipation or incontinence. Stimulation parameters are most often empiric and not based on systematic studies. One prerequisite to evaluate effects of intestinal electrical stimulation is a direct assessment of intestinal motility. Some common methods are strain gauge transducers or manometry. With both the methods, it is not possible to record the exact 3-D movement. Therefore, we established a new method to record gastrointestinal motility with ultraminiaturized accelerometers, directly glued to the outer surface of the stomach, small intestine, and colon. With this technique, we were able to record precise local motility changes after electrical stimulation. Due to the low energy demand and the small size of the system, it is potentially useful for chronic measurements at multiple sites of the intestinal tract. We will present our first results regarding stimulation-dependent motility changes using up to eight implanted accelerometers in an acute pig model.

4.
Sci Rep ; 8(1): 14041, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232392

RESUMO

We invented the first non-metallic, self-adhesive and dry biosignalling electrode. The PEDOT polymer electrode changes its aggregate state and conductivity by a light curing procedure. The electrode can be applied as a gel underneath hair without shaving. With the aid of blue light, the electrode can be hardened within a few seconds at the desired location on the scalp. The cured polymer electrode is highly conductive and can be applied on a very small location. Unlike other EEG electrodes, our electrode does not lose conductivity upon drying. Furthermore, our electrode strongly bonds to skin and does not require any additional adhesive. Short circuits due to an outflow of gel are prevented with this technique. Therefore, the PEDOT polymer electrode is extremely well suited for applications that, up to now, have been challenging, such as non-invasive EEG recordings from awake and freely moving animals, EEG recordings from preterm babies in the neonatal intensive care unit or long-term recordings in the case of sleep monitoring or epilepsy diagnostics. We addressed two technical questions in this work. First, is the EEG recorded with polymer electrodes comparable to a standard EEG? Second, is it possible to record full-band EEGs with our electrodes?


Assuntos
Eletroencefalografia/instrumentação , Polímeros/química , Sono/fisiologia , Animais , Animais Recém-Nascidos , Impedância Elétrica , Eletrodos , Eletroencefalografia/veterinária , Géis , Humanos , Modelos Animais , Pele , Suínos
5.
Transl Neurosci ; 8: 211-224, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29445543

RESUMO

The objective of this study was to evaluate the piglet and the mouse as model systems for preterm cortical development. According to the clinical context, we used non invasive EEG recordings. As a prerequisite, we developed miniaturized Ag/AgCl electrodes for full band EEG recordings in mice and verified that Urethane had no effect on EEG band power. Since mice are born with a "preterm" brain, we evaluated three age groups: P0/P1, P3/P4 and P13/P14. Our aim was to identify EEG patterns in the somatosensory cortex which are distinguishable between developmental stages and represent a physiologic brain development. In mice, we were able to find clear differences between age groups with a simple power analysis of EEG bands and also for phase locking and power spectral density. Interhemispheric coherence between corresponding regions can only be seen in two week old mice. The canolty maps for piglets as well as for mice show a clear PAC (phase amplitude coupling) pattern during development. From our data it can be concluded that analytic tools relying on network activity, as for example PAC (phase amplitude coupling) are best suited to extract basic EEG patterns of cortical development across species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...