Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39008059

RESUMO

RATIONALE: The compound 5-((4-methoxyphenyl)thio)benzo[c][1,2,5]thiadiazole (MTDZ) has recently been shown to inhibit in vitro acetylcholinesterase activity, reduce cognitive damage, and improve neuropsychic behavior in mice, making it a promising molecule to treat depression. OBJECTIVES: This study investigated the antidepressant-like action of MTDZ in mice and its potential mechanisms of action. RESULTS: Molecular docking assays were performed and suggested a potential inhibition of monoamine oxidase A (MAO-A) by MTDZ. The toxicity study revealed that MTDZ displayed no signs of toxicity, changes in oxidative parameters, or alterations to biochemistry markers, even at a high dose of 300 mg/kg. In behavioral tests, MTDZ administration reduced immobility behavior during the forced swim test (FST) without adjusting the climbing parameter, suggesting it has an antidepressant effect. The antidepressant-like action of MTDZ was negated with the administration of 5-HT1A, 5-HT1A/1B, and 5-HT3 receptor antagonists, implying the involvement of serotonergic pathways. Moreover, the antidepressant-like action of MTDZ was linked to the NO system, as L-arginine pretreatment inhibited its activity. The ex vivo assays indicated that MTDZ normalized ATPase activity, potentially linking this behavior to its antidepressant-like action. MTDZ treatment restricted MAO-A activity in the cerebral cortices and hippocampi of mice, proposing a selective inhibition of MAO-A associated with the antidepressant-like effect of the compound. CONCLUSIONS: These findings suggest that MTDZ may serve as a promising antidepressant agent due to its selective inhibition of MAO-A and the involvement of serotonergic and NO pathways.

2.
Oxid Med Cell Longev ; 2021: 2169017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603594

RESUMO

Natural products are important sources of biomolecules possessing antitumor activity and can be used as anticancer drug prototypes. The rich biodiversity of tropical and subtropical regions of the world provides considerable bioprospecting potential, including the potential of propolis produced by stingless bee species. Investigations of the potential of these products are extremely important, not only for providing a scientific basis for their use as adjuvants for existing drug therapies but also as a source of new and potent anticancer drugs. In this context, this article organizes the main studies describing the anticancer potential of propolis from different species of stingless bees with an emphasis on the chemical compounds, mechanisms of action, and cell death profiles. These mechanisms include apoptotic events; modulation of BAX, BAD, BCL2-L1 (BCL-2 like 1), and BCL-2; depolarization of the mitochondrial membrane; increased caspase-3 activity; poly (ADP-ribose) polymerase (PARP) cleavage; and cell death induction by necroptosis via receptor interacting protein kinase 1 (RIPK1) activation. Additionally, the correlation between compounds with antioxidant and anti-inflammatory potential is demonstrated that help in the prevention of cancer development. In summary, we highlight the important antitumor potential of propolis from stingless bees, but further preclinical and clinical trials are needed to explore the selectivity, efficacy, and safety of propolis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Própole/farmacologia , Animais , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Própole/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Curr Org Synth ; 17(3): 192-210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32091342

RESUMO

BACKGROUND: Sulfur-containing compounds represent an important class of chemical compounds due to their wide range of biological and pharmaceutical properties. Moreover, sulfur-containing compounds may be applied in other fields, such as biological, organic, and materials chemistry. Several studies on the activities of sulfur compounds have already proven their anti-inflammatory properties and use to treat diseases, such as Alzheimer's, Parkinson's, and HIV. Moreover, examples of sulfur-containing compounds include dapsone, quetiapine, penicillin, probucol, and nelfinavir, which are important drugs with known activities. OBJECTIVE: This review will focus on the synthesis and application of some sulfur-containing compounds used to treat several diseases, as well as promising new drug candidates. CONCLUSION: Due to the variety of compounds containing C-S bonds, we have reviewed the different synthetic routes used toward the synthesis of sulfur-containing drugs and other compounds.


Assuntos
Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/uso terapêutico , Compostos de Enxofre/síntese química , Compostos de Enxofre/uso terapêutico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...