Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animal ; 16 Suppl 3: 100537, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35606270

RESUMO

Ruminants have evolved with the capability to recycle endogenous urea to the gastrointestinal tract (GIT). Ruminal ammonia derived from urea recycling makes a net contribution to digestible N flow if it is used to synthesise microbial protein. The dynamics of urea recycling and its quantitative importance to the N economy of ruminants are affected by dietary and physiological factors. In general, the transfer of endogenous urea to the GIT is related positively to blood urea concentration and rumen-fermentable energy supply and negatively to ruminal ammonia concentration. After consumption of a meal rich in rumen-degradable N, ruminal ammonia concentrations peak and can exceed the rate of carbohydrate fermentation, resulting in inefficient ammonia capture by microbes. These periods are characterised by greater ruminal ammonia efflux and reduced urea influx. A low ruminal ammonia concentration over time can stimulate recycling of endogenous urea-N to the rumen and its capture into microbial protein and reduce N excretion. Shifting protein digestion to the postruminal GIT can reduce ruminal ammonia concentration and increase plasma urea concentration, conditions that should promote greater reliance on urea recycling to meet N requirements of the rumen. Their ability to use non-protein N, of dietary or endogenous origin, to synthesise metabolisable protein and subsequently meat and milk contributes positively to the human-edible protein efficiency of ruminants. Dietary urea is rapidly degraded to ammonia in the rumen, and high rates of ammonia absorption across the rumen wall when a urea-rich meal is consumed can lead to hypophagic and toxic effects associated with urea feeding. Non-protein N absorbed in the postruminal GIT can contribute substantially to net urea and ammonia uptake into the portal vein, which reflects the potential for targeted urea release in postruminal sections of the GIT. In this review, we suggest that the regulation of urea recycling to the rumen is a critical step towards improved efficiency of ruminal N utilisation. We describe an approach by which postruminal urea supplementation, as an alternative to its ruminal application, may allow a slow and steady return of N to the rumen, avoid peaks in ammonia concentration associated with feeding, confer a greater and more efficient microbial synthesis, and improve fibre digestion compared with conventional urea supplementation.


Assuntos
Rúmen , Ureia , Amônia/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Proteínas Alimentares/metabolismo , Digestão/fisiologia , Fermentação , Humanos , Nitrogênio/metabolismo , Rúmen/metabolismo , Ruminantes/metabolismo , Ureia/metabolismo
2.
Animal ; 15(3): 100170, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33485830

RESUMO

Male Holstein calves commonly receive minimal quantities of milk replacer (MR) to speed up weaning and reduce costs. Studies with Holstein female calves show that early life feed restriction affects energy metabolism later in life. Aiming to test this hypothesis, 120 Holstein bull calves (48.4 ± 2.2 kg of BW and 20 ± 3.2 d of age) housed in 24 pens were blocked and randomized to two treatments: A low calf MR allowance (LP) (two daily doses of 2 l each, 582 g/d of DM), or a high MR allowance (HP) (two daily meals of 4 l each, 1164 g/d of DM). Calves were weaned at day 49 of the study and slaughtered at 32.8 ± 0.5 weeks of age. Throughout the study, animals had ad libitum access to a common compound feed, straw, and water. Twenty-four animals were randomly selected for an intravenous glucose tolerance test (IVGTT). The IVGTT was performed at week 6 and 12 of the study and consisted of an intravenous glucose infusion and sequential blood sampling up to 90 min after glucose infusions. Calves were heavier for HP until week 12, after which the difference disappeared. By design, the MR intake was higher in the HP group resulting in a higher energy intake and a higher average daily gain in the preweaning phase. Blood glucose curves were not different at week 6, but at week 12, 5 min after the infusion, glucose was higher in HP calves. Insulin curves were not different at week 6. Nevertheless, in week 12, a higher insulin concentration was observed for HP 5, 10, 15, 20, 30, 35, and 45 min' postinfusion, indicating a higher requirement of insulin to control glycemia. Differences between HP and LP calves were also observed for the quantitative insulin sensitivity check index, maximum insulin concentration, and insulin delta at week 12. Blood glucose reached maximum concentration within 5-10 min of the IVGTT test, and the concentration was, on average, 8.58 and 10.80 mmol/l at weeks 6 and 12, respectively. Insulin reached maximum concentration within 10-15 min of the IVGTT, and concentrations were, on average, 33.32 and 32.61 µUI/ml at weeks 6 and 12, respectively. Doubling MR supply improved animal growth up to weaning, but these differences disappeared by the end of the feeding period. Despite similar responses to glucose infusions preweaning, higher milk supply seemed to decrease insulin sensitivity after weaning.


Assuntos
Substitutos do Leite , Leite , Ração Animal/análise , Animais , Bovinos , Dieta , Metabolismo Energético , Feminino , Masculino , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...