Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903932

RESUMO

Brown marine macroalga Padina gymnospora (Phaeophyceae, Ochrophyta) produces both secondary metabolites (phlorotannins) and precipitate calcium carbonate (CaCO3-aragonite) on its surface as potential defensive strategies against herbivory. Here, we have evaluated the effect of natural concentrations of organic extracts (dichloromethane-DI; ethyl acetate-EA and methanol-ME, and three isolated fractions) and mineralized tissues of P. gymnospora as chemical and physical resistance, respectively, against the sea urchin Lytechinus variegatus through experimental laboratory feeding bioassays. Fatty acids (FA), glycolipids (GLY), phlorotannins (PH) and hydrocarbons (HC) were also characterized and/or quantified in extracts and fractions from P. gymnospora using nuclear magnetic resonance (NMR) and gas chromatography (GC) coupled to mass spectrometry (CG/MS) or GC coupled to flame ionization detector (FID) and chemical analysis. Our results showed that chemicals from the EA extract of P. gymnospora were significantly important in reducing consumption by L. variegatus, but the CaCO3 did not act as a physical protection against consumption by this sea urchin. An enriched fraction containing 76% of the new hydrocarbon 5Z,8Z,11Z,14Z-heneicosatetraene exhibited a significant defensive property, while other chemicals found in minor amounts, such as GLY, PH, saturated and monounsaturated FAs and CaCO3 did not interfere with the susceptibility of P. gymnospora to L. variegatus consumption. We suggest that the unsaturation of the 5Z,8Z,11Z,14Z-heneicosatetraene from P. gymnospora is probably an important structural characteristic responsible for the defensive property verified against the sea urchin.

2.
Sci Rep ; 12(1): 9589, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688967

RESUMO

Coralline algae constitute one of the main groups of highly vulnerable calcified benthic organisms to ocean acidification. Although damaging effects of seawater acidification on the coralline algae skeleton have been widely demonstrated, the susceptibility to dissolution varies according to the Mg2+ in the calcite lattice. Even though the Southwest Atlantic Ocean exhibits the world's largest rhodolith beds, which occupies 20,902 km2, there is no information regarding the coralline algae species mineralogy in this area. Here, we provide mineralogical data of twenty-four coralline algae species, examine the similarity in taxonomic groups, spatial occurrence and the vulnerability of these algae to seawater acidification. Mineralogy revealed that coralline algae skeletons were mainly composed of high-Mg calcite (> 70%) with minor presence of aragonite (< 30%) and dolomite (< 3%). There were no similarities between the skeletal mineralogy of taxonomic groups and sampling regions. Remarkably, the mean Mg-substitution of encrusting coralline algae from the Brazilian Shelf was 46.3% higher than global average. Because of the higher mean Mg-substitution in calcite compared with worldwide coralline algae, these algae from Southwest Atlantic Ocean would be highly susceptible to dissolution caused by the expected near-future ocean acidification and will compromise CaCO3 net production across the Brazilian Shelf.


Assuntos
Rodófitas , Água do Mar , Oceano Atlântico , Carbonato de Cálcio , Concentração de Íons de Hidrogênio
3.
Micron ; 120: 17-24, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30759416

RESUMO

The study of fossil feathers has been revitalized in the last few decades and has contributed significantly to paleontological studies of dinosaurs and birds. Specific morphological and physicochemical characteristics of the microscale structures of feathers and the protein keratin are key targets when preserved during the fossilization process. Keratin is a fibrous protein that composes some hard tissues such as hair, nails and feathers. It is part of the so called intermediate filaments inside keratinocyte cells and is rich in sulfur containing amino acid cysteine. To date, different microscopy and analytical methods have been used for the analysis and detailed characterization and classification of feathers. However, in this work we showed that analytical optical and electron microscopies can be quick and precise methods with minimal effects on the sample during analysis. This association of different approaches on the same sample results in correlative data albeit in different length scales. Intracellular bodies called melanosomes originally present in melanocyte cells were identified with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), and had well-defined orientation and a mean aspect ratio comparable to melanosomes extant in dark feathers. The detection of sulphur in melanosomes via Energy Dispersive Spectroscopy both in SEM and TEM shows that, along the fossilization process, sulphur from the degraded keratin matrix could have been trapped inside the melanosomes. Chemical groups that make up keratin and melanin in the fossil sample were detected via FT-IR Spectroscopy and Confocal Laser Scanning Microscopy (CLSM). The use of combined analytical microscopy techniques can contribute significantly to the study of fossils generating precise results with minimum damage to the original sample.


Assuntos
Plumas/ultraestrutura , Fósseis/ultraestrutura , Melanossomas/química , Enxofre/análise , Animais , Queratinas/análise , Melaninas/análise , Melanócitos/citologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Phycol ; 53(6): 1294-1304, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28990189

RESUMO

Approximately half of the Padina (Dictyotales, Phaeophyceae) species mineralize aragonite needles over the adaxial thallus surface, where mineral bands are interspersed with nonmineralized regions along the thallus from the apical to basal end. However, this calcification pattern and the related algal properties are not well understood. Therefore, this work was performed to elucidate a potential role of cell walls in the inhibition/induction of mineralization in the brown alga Padina gymnospora. In a comparison of specific thallus regions, differences were identified in the cellulose distribution, microfibrils arrangement and thickness, distribution and abundance of phenolic substances, and physical differences among the surfaces of the thallus (deformation, adhesion, topography, and nano-rugosity). In vitro mineralization assays indicated that phenolic substances are strong modulators of calcium carbonate crystals growth. In addition, de novo mineralization assays over cell wall surfaces that were used as templates, even without cellular activity, indicated that the cell wall remains a key factor in the induction/inhibition of mineralization. Overall, the current findings indicate a strong correlation between the physico-chemical and structural properties of the cell wall and the alternation pattern of the mineralization bands over the thallus of P. gymnospora.


Assuntos
Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Phaeophyceae/fisiologia , Brasil , Parede Celular/fisiologia , Parede Celular/ultraestrutura , Phaeophyceae/ultraestrutura
5.
J Phycol ; 53(3): 642-651, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28258584

RESUMO

Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith-forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix-mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico-chemical interactions between rhodoliths and the environment in coralline reefs.


Assuntos
Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Rodófitas/fisiologia , Brasil , Parede Celular/fisiologia , Parede Celular/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
6.
PLoS One ; 11(4): e0154417, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119151

RESUMO

The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.


Assuntos
Antozoários/fisiologia , Carbonato de Cálcio/metabolismo , Recifes de Corais , Cianobactérias/fisiologia , Animais , Brasil , Carbonato de Cálcio/química , Sedimentos Geológicos/análise , Estações do Ano , Água do Mar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA