Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 33(8): 1510-1517, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35866646

RESUMO

Naphthenic acids comprise one of the most toxic compounds of the produced water released from offshore oil platforms. Therefore, developing and applying faster, simpler, and more efficient analytical methods for analyzing naphthenic acids are urgently needed. Electromembrane extraction (EME) uses the electrokinetic migration of target ions through a porous membrane. Herein, the EME method was applied to extract naphthenic acids from produced water. The EME method was optimized, and the optimal conditions encompassed decanol as the organic solvent, the sample with pH 10.0, 5 min of extraction at 200 V, and the ratio 4:1 (borate buffer/matrix, v/v). Electrochemical impedance spectroscopy confirmed charged species' migration from produced water through the EME. Subsequently, all extracts were analyzed by ultra-high-resolution mass spectrometry. The EME efficiency was assessed by comparing the extraction results to the liquid-liquid extraction (LLE) method results. Analytical results showed good linearity for both solvent and matrix curves (R2 > 0.98). Low detection limits ranged from 0.10 to 0.13 µg mL-1 and quantification limits from 0.36 to 0.45 µg mL-1. Precision and accuracy values ranged from -13.3% to 16.5%. These values fit the proposed method, demonstrating that the EME was more efficient than LLE in naphthenic acid extraction. The EME method preferably extracted aromatic compounds with double-bond equivalence from 6 to 8. The EME coupled with ultra-high-resolution mass spectrometry was demonstrated as a promising analytical approach to naphthenic acid extraction as an efficient and more environmentally friendly alternative to conventional extraction methods.


Assuntos
Membranas Artificiais , Água , Ácidos Carboxílicos , Espectrometria de Massas , Solventes/química , Água/química
2.
Anal Methods ; 13(44): 5274-5281, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34704566

RESUMO

This work describes the surface coating of wooden toothpicks with amino groups (NH2) for electrospray ionization mass spectrometry (MS) analysis of naphthenic acids (NAs) in produced water samples and crude oil fractions. NH2 was introduced into the cellulosic material through a silanization reaction using aminopropyltriethoxysilane. An NH2-modified toothpick was inserted into the analyte extraction sample and was subsequently used as an electrospray emitter for MS analysis. The extraction conditions were optimized by analyzing NAs (benzoic acid, 1-naphthoic acid, decanoic acid, 3,5-dimethyladamantane-1-carboxylic acid, and 3,5-dimethyladamantane-1-acetic acid) in pure water, and the best condition was using 5 min of extraction time with the samples under agitation. Modified and unmodified wooden toothpicks were compared, and the intensities of all NAs were higher when using the modified substrates than when using the unmodified ones. Limit of detection (LOD), limit of quantification (LOQ), linearity, precision, and recovery were determined by analyzing decanoic acid in seawater samples. The LOD and LOQ were 2 and 5 µg mL-1, respectively, and a linear correlation (R2 = 0.9927) was obtained with concentrations ranging from 5 to 250 µg mL-1. Precision values ranged from 6 to 13% and recoveries from 89 to 106%. The technique was also employed to analyze three produced water samples, in which decanoic acid was semi-quantified, and the concentrations ranged from 10 to 13 µg mL-1. High abundances of acidic compounds of class O2 with DBEs (double bond equivalents) ranging from 1 to 3 and carbon numbers going from 8 to 12 were detected in the produced water samples. The results suggest that the modification of wooden toothpicks with NH2 might offer a significant advancement in the knowledge of cheap substrates that can improve the sensitivity of analysis of NAs in water samples.


Assuntos
Petróleo , Espectrometria de Massas por Ionização por Electrospray , Ácidos Carboxílicos/análise , Ácidos Carboxílicos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Água
3.
Anal Chem ; 86(18): 9082-90, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25148857

RESUMO

We address a novel method for analytical determinations that combines simplicity, rapidity, low consumption of chemicals, and portability with high analytical performance taking into account parameters such as precision, linearity, robustness, and accuracy. This approach relies on the effect of the analyte content over the Gibbs free energy of dispersions, affecting the thermodynamic stabilization of emulsions or Winsor systems to form microemulsions (MEs). Such phenomenon was expressed by the minimum volume fraction of amphiphile required to form microemulsion (Φ(ME)), which was the analytical signal of the method. Thus, the measurements can be taken by visually monitoring the transition of the dispersions from cloudy to transparent during the microemulsification, like a titration. It bypasses the employment of electric energy. The performed studies were: phase behavior, droplet dimension by dynamic light scattering, analytical curve, and robustness tests. The reliability of the method was evaluated by determining water in ethanol fuels and monoethylene glycol in complex samples of liquefied natural gas. The dispersions were composed of water-chlorobenzene (water analysis) and water-oleic acid (monoethylene glycol analysis) with ethanol as the hydrotrope phase. The mean hydrodynamic diameter values for the nanostructures in the droplet-based water-chlorobenzene MEs were in the range of 1 to 11 nm. The procedures of microemulsification were conducted by adding ethanol to water-oleic acid (W-O) mixtures with the aid of micropipette and shaking. The Φ(ME) measurements were performed in a thermostatic water bath at 23 °C by direct observation that is based on the visual analyses of the media. The experiments to determine water demonstrated that the analytical performance depends on the composition of ME. It shows flexibility in the developed method. The linear range was fairly broad with limits of linearity up to 70.00% water in ethanol. For monoethylene glycol in water, in turn, the linear range was observed throughout the volume fraction of analyte. The best limits of detection were 0.32% v/v water to ethanol and 0.30% v/v monoethylene glycol to water. Furthermore, the accuracy was highly satisfactory. The natural gas samples provided by the Petrobras exhibited color, particulate material, high ionic strength, and diverse compounds as metals, carboxylic acids, and anions. These samples had a conductivity of up to 2630 µS cm(-1); the conductivity of pure monoethylene glycol was only 0.30 µS cm(-1). Despite such downsides, the method allowed accurate measures bypassing steps such as extraction, preconcentration, and dilution of the sample. In addition, the levels of robustness were promising. This parameter was evaluated by investigating the effect of (i) deviations in volumetric preparation of the dispersions and (ii) changes in temperature over the analyte contents recorded by the method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...