Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 447(2): 299-303, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24709080

RESUMO

The neural system appears before the vascular system in the phylogenetic tree. During evolution, vascular system generation takes advantage of the pre-existing vascular endothelial growth factor (VEGF) in order to form its networks. Nevertheless, the role of VEGF in neuronal and glial cells is not yet completely understood. In order to support the hypothesis of a neural role for VEGF, we searched for VEGF- and VEGF receptor (VEGFR)-like immunoreactivities (immunohisto/cytochemistry and Western blotting) in the eyestalk of the invertebrate Ucides cordatus (Crustacea, Brachyura, Ucididae). Our results showed that both neurons and glial cells expressed VEGF-immunoreactivity, and that VEGFR was evidenced in neural cells. This is the first report about the VEGF/VEGFR-like immunoreactivities in the nervous tissue of a crustacean, and enables U. cordatus to be included in the repertoire of animal models used for ascertaining the role of VEGF in the nervous system.


Assuntos
Braquiúros/crescimento & desenvolvimento , Gânglios Sensitivos/crescimento & desenvolvimento , Neurogênese , Neurônios/fisiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Vias Visuais/crescimento & desenvolvimento , Animais , Braquiúros/citologia , Masculino , Neurônios/citologia , Vias Visuais/citologia
2.
PLoS One ; 8(11): e80896, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278343

RESUMO

To date nothing is known about the subacute phase of neurodegeneration following injury in invertebrates. Among few clues available are the results published by our group reporting hemocytes and activated glial cells at chronic and acute phases of the lesion. In vertebrates, glial activation and recruitment of immunological cells are crucial events during neurodegeneration. Here, we aimed to study the subacute stage of neurodegeneration in the crab Ucides cordatus, investigating the cellular/molecular strategy employed 48 hours following ablation of the protocerebral tract (PCT). We also explored the expression of nitric oxide (NO) and histamine in the PCT during this phase of neurodegeneration. Three immune cellular features which seem to characterize the subacute phase of neurodegeneration were revealed by: 1) the recruitment of granulocytes and secondarily of hyalinocytes to the lesion site (inducible NO synthase- and histamine-positive cells); 2) the attraction of a larger number of cells than observed in the acute phase; 3) the presence of activated glial cells as shown by the round shaped nuclei and increased expression of glial fibrillary acidic protein. We suggest that molecules released from granulocytes in the acute phase attract the hyalinocytes thus moving the degeneration process to the subacute phase. The importance of our study resides in the characterization of cellular and biochemical strategies peculiar to the subacute stage of the neurodegeneration in invertebrates. Such events are worth studying in crustaceans because in invertebrates this issue may be addressed with less interference from complex strategies resulting from the acquired immune system.


Assuntos
Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Crustáceos/imunologia , Imunidade Inata , Degeneração Neural/imunologia , Degeneração Neural/patologia , Animais , Sistema Nervoso Central/ultraestrutura , Crustáceos/ultraestrutura , Proteína Glial Fibrilar Ácida/metabolismo , Hemócitos/patologia , Hemócitos/ultraestrutura , Histamina/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Lectinas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...