Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5691, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383279

RESUMO

Diets for feedlot cattle must be a higher energy density, entailing high fermentable carbohydrate content. Feed additives are needed to reduce possible metabolic disorders. This study aimed to analyze the post-rumen effects of different levels of starch (25%, 35%, and 45%) and additives (monensin or a blend of essential oils and exogenous α-amylase) in diets for Nellore feedlot cattle. The cecum tissue proteome was analyzed via two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and then differentially expressed protein spots were identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The use of blends of essential oils associated with α-amylase as a feed additive promoted the upregulation of enzymes such as triosephosphate isomerase, phosphoglycerate mutase, alpha-enolase, beta-enolase, fructose-bisphosphate aldolase, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), L-lactate dehydrogenase B, L-lactate dehydrogenase A chain, L-lactate dehydrogenase, and ATP synthase subunit beta, which promote the degradation of carbohydrates in the glycolysis and gluconeogenesis pathways and oxidative phosphorylation, support pyruvate metabolism through the synthesis of lactate from pyruvate, and participate in the electron transport chain, producing ATP from ADP in the presence of a proton gradient across the membrane. The absence of proteins related to inflammation processes (leukocyte elastase inhibitors) in the cecum tissues of animals fed essential oils and amylase may be because feed enzymes can remain active in the intestine and aid in the digestion of nutrients that escape rumen fermentation; conversely, the effect of monensin is more evident in the rumen and less than 10% results in post-ruminal action, corroborating the hypothesis that ionophore antibiotics have a limited effect on the microbiota and intestinal fermentation of ruminants. However, the increase in starch in these diets promoted a downregulation of enzymes linked to carbohydrate degradation, probably caused by damage to the cecum epithelium due to increased responses linked to inflammatory injuries.


Assuntos
Ração Animal , Rúmen , Ração Animal/análise , Animais , Bovinos , Ceco/metabolismo , Cromatografia Líquida , Dieta/veterinária , Digestão/fisiologia , Metabolismo Energético , Fermentação , Proteoma/metabolismo , Rúmen/metabolismo , Amido/metabolismo , Espectrometria de Massas em Tandem
2.
Artigo em Inglês | MEDLINE | ID: mdl-29026540

RESUMO

BACKGROUND: Nutrition is one of the most important factors that affect animal performance, and it therefore also impacts on financial results in beef systems. In this way, finding the best strategy for feeding supplements is of paramount importance. Aiming to evaluate the effect of supplement feeding strategies for beef cows in the last third of gestation, two experiments were conducted. In Experiment 1, 35 pregnant Nellore cows were assigned to a completely randomized design with four treatments: control, which received no supplement; supplementation for the last 30 d of gestation (30-d; 3.0 kg/d); supplementation for the last 60 d of gestation (60-d; 1.5 kg/d); or supplementation for the last 90 d of gestation (90-d; 1.0 kg/d). All supplemented treatments received the same total amount of supplement throughout the experiment: 90 kg (20% of crude protein). A second experiment (Experiment 2) was delineated to evaluate the effects of the amounts offered in Experiment 1 on intake and metabolism. Four multiparous pregnant Nellore cows were assigned to a 4 × 4 Latin square design, with periods of 15 d each. RESULTS: There was a linear effect of the number of days of supplementation on calving body weight (BW; P < 0.05) and a quadratic effect on BW change from parturition to d 31 post-calving (P < 0.05), with cows on the 60-d strategy losing less BW post-calving. No difference was found in offspring birth BW (P > 0.10). A significant linear effect on interval from parturition to conception (P < 0.05) was observed, with the highest calving to conception interval being observed in the 90-d strategy. The level of supplementation did not affect forage intake or neutral detergent fiber digestibility (P > 0.10). Nitrogen excreted through urine tended to increase linearly with the level of supplementation (P < 0.10). CONCLUSION: Providing 1.5 kg of supplement during the last 60 d of gestation improves cow performance after calving, reducing the magnitude of BW lost, and reduces the number of days from calving to re-conception in the following breeding season compared to the usually recommended period of supplementation of 90 d pre-partum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...